Jay T Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766632/publications.pdf

Version: 2024-02-01

257101 253896 2,477 42 24 43 citations h-index g-index papers 45 45 45 2398 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Using Dual Toll-like Receptor Agonism to Drive Th1-Biased Response in a Squalene- and \hat{l}_{\pm} -Tocopherol-Containing Emulsion for a More Effective SARS-CoV-2 Vaccine. Pharmaceutics, 2022, 14, 1455.	2.0	3
2	Co-adsorption of synthetic Mincle agonists and antigen to silica nanoparticles for enhanced vaccine activity: A formulation approach to co-delivery. International Journal of Pharmaceutics, 2021, 593, 120119.	2.6	7
3	Design of Trehaloseâ€Based Amide/Sulfonamide Câ€ŧype Lectin Receptor Signaling Compounds. ChemMedChem, 2021, 16, 1246-1251.	1.6	11
4	A tractable covalent linker strategy for the production of immunogenic antigen-TLR7/8L bioconjugates. Chemical Communications, 2021, 57, 4698-4701.	2.2	6
5	Advancing Adjuvants for Mycobacterium tuberculosis Therapeutics. Frontiers in Immunology, 2021, 12, 740117.	2.2	10
6	Aryl Trehalose Derivatives as Vaccine Adjuvants for <i>Mycobacterium tuberculosis</i> Journal of Medicinal Chemistry, 2020, 63, 309-320.	2.9	29
7	MPL Adjuvant Contains Competitive Antagonists of Human TLR4. Frontiers in Immunology, 2020, 11, 577823.	2.2	42
8	$6,6\hat{a}\in^2$ -Aryl trehalose analogs as potential Mincle ligands. Bioorganic and Medicinal Chemistry, 2020, 28, 115564.	1.4	14
9	Novel Lipidated Imidazoquinoline TLR7/8 Adjuvants Elicit Influenza-Specific Th1 Immune Responses and Protect Against Heterologous H3N2 Influenza Challenge in Mice. Frontiers in Immunology, 2020, 11, 406.	2.2	34
10	Optimization of 8-oxoadenines with toll-like-receptor 7 and 8 activity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126984.	1.0	6
11	Co-encapsulation of synthetic lipidated TLR4 and TLR7/8 agonists in the liposomal bilayer results in a rapid, synergistic enhancement of vaccine-mediated humoral immunity. Journal of Controlled Release, 2019, 315, 186-196.	4.8	34
12	Synthetic Toll-like Receptors 7 and 8 Agonists: Structure–Activity Relationship in the Oxoadenine Series. ACS Omega, 2019, 4, 15665-15677.	1.6	14
13	Species-Specific Structural Requirements of Alpha-Branched Trehalose Diester Mincle Agonists. Frontiers in Immunology, 2019, 10, 338.	2.2	18
14	Immunoregulatory Activity of the Natural Product Laminarin Varies Widely as a Result of Its Physical Properties. Journal of Immunology, 2018, 200, 788-799.	0.4	61
15	Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants. Vaccine, 2016, 34, 4304-4312.	1.7	35
16	PEG modified liposomes containing CRX-601 adjuvant in combination with methylglycol chitosan enhance the murine sublingual immune response to influenza vaccination. Journal of Controlled Release, 2016, 223, 64-74.	4.8	56
17	Structural requirements for TLR7-selective signaling by 9-(4-piperidinylalkyl)-8-oxoadenine derivatives. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1318-1323.	1.0	24
18	Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually. Vaccine, 2015, 33, 5845-5853.	1.7	23

#	Article	IF	CITATIONS
19	Characterization of TRIF selectivity in the AGP class of lipid A mimetics: Role of secondary lipid chains. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 547-553.	1.0	6
20	Intranasal Vaccination Promotes Detrimental Th17-Mediated Immunity against Influenza Infection. PLoS Pathogens, 2014, 10, e1003875.	2.1	81
21	Selective TRIF-Dependent Signaling by a Synthetic Toll-Like Receptor 4 Agonist. Science Signaling, 2012, 5, ra13.	1.6	69
22	The †Ethereal†nature of TLR4 agonism and antagonism in the AGP class of lipid A mimetics. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5350-5354.	1.0	26
23	Toll-like receptor 4 agonists as vaccine adjuvants. , 2006, , 93-107.		3
24	Synthetic Toll-Like Receptor 4 Agonists Stimulate Innate Resistance to Infectious Challenge. Infection and Immunity, 2005, 73, 3044-3052.	1.0	110
25	The low-toxicity versions of LPS, MPL(R) adjuvant and RC529, are efficient adjuvants for CD4+ T cells. Journal of Leukocyte Biology, 2005, 78, 1273-1280.	1.5	121
26	Structure-Activity Relationship of Synthetic Toll-like Receptor 4 Agonists. Journal of Biological Chemistry, 2004, 279, 4440-4449.	1.6	139
27	Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opinion on Biological Therapy, 2004, 4, 1129-1138.	1.4	234
28	A single vaccination with protein-microspheres elicits a strong CD8 T-cell-mediated immune response against Mycobacterium tuberculosis antigen Mtb8.4. Vaccine, 2004, 22, 1964-1972.	1.7	34
29	Enhancement of antigen-specific immunity via the TLR4 ligands MPLâ,,¢ adjuvant and Ribi.529. Expert Review of Vaccines, 2003, 2, 219-229.	2.0	222
30	Immunostimulatory activity of aminoalkyl glucosaminide 4-phosphates (AGPs): induction of protective innate immune responses by RC-524 and RC-529. Journal of Endotoxin Research, 2002, 8, 453-458.	2.5	37
31	Pre-clinical evaluation of an in vitro selection protocol for the enrichment of transduced CD34+ cell-derived human dendritic cells. Gene Therapy, 2001, 8, 1427-1435.	2.3	8
32	Thymocyte differentiation from lentivirus-marked CD34+ cells in infant and adult human thymus. Journal of Immunological Methods, 2000, 245, 31-43.	0.6	9
33	In VitroSelection of Lentivirus Vector-Transduced Human CD34+Cells. Human Gene Therapy, 2000, 11, 1949-1957.	1.4	16
34	Differentiation and Expansion of Lentivirus Vector-Marked Dendritic Cells Derived from Human CD34+Cells. Human Gene Therapy, 2000, 11, 2483-2492.	1.4	14
35	Lentivirus Vector Mobilization and Spread by Human Immunodeficiency Virus. Human Gene Therapy, 2000, 11, 2331-2339.	1.4	50
36	Efficient Transduction of Human Lymphocytes and CD34+ Cells via Human Immunodeficiency Virus-Based Gene Transfer Vectors. Human Gene Therapy, 1999, 10, 935-945.	1.4	64

#	Article	IF	CITATION
37	Human Cord Blood CD34+CD38- Cell Transduction via Lentivirus-Based Gene Transfer Vectors. Human Gene Therapy, 1999, 10, 1479-1489.	1.4	83
38	Sequence and Analysis of the Genome of a Baculovirus Pathogenic forLymantria dispar. Virology, 1999, 253, 17-34.	1.1	297
39	Characterization of the interaction between the baculovirus ssDNA-binding protein (LEF-3) and putative helicase (P143) Journal of General Virology, 1999, 80, 493-500.	1.3	33
40	The Sequence of theOrgyia pseudotsugataMultinucleocapsid Nuclear Polyhedrosis Virus Genome. Virology, 1997, 229, 381-399.	1.1	260
41	Characterization of the interaction between the baculovirus replication factors LEF-1 and LEF-2. Journal of Virology, 1997, 71, 3114-3119.	1.5	56
42	The baculovirus single-stranded DNA binding protein, LEF-3, forms a homotrimer in solution. Journal of Virology, 1997, 71, 3574-3579.	1.5	40