
Maria Graça Campos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7666041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Special Bioactivities of Phenolics from Acacia dealbata L. with Potential for Dementia, Diabetes and Antimicrobial Treatments. Applied Sciences (Switzerland), 2022, 12, 1022.	1.3	8
2	Clinical Data on Canabinoids: Translational Research in the Treatment of Autism Spectrum Disorders. Biomedicines, 2022, 10, 796.	1.4	3
3	Prevention of side effects from chemoradiotherapy and antitumor potential of royal jelly and its components: A systematic review. , 2022, , 221-244.		0
4	Soy Isoflavones. , 2021, , 205-242.		0
5	Removal of Imidacloprid from Water by Microalgae Nannochloropsis sp. and Its Determination by a Validated RP-HPLC Method. Bulletin of Environmental Contamination and Toxicology, 2021, 107, 131-139.	1.3	19
6	Plant Species of Sub-Family Valerianaceae—A Review on Its Effect on the Central Nervous System. Plants, 2021, 10, 846.	1.6	18
7	Botanical origin approach for a better understanding of chemical and nutritional composition of beebread as an important value-added food supplement. LWT - Food Science and Technology, 2021, 142, 111068.	2.5	14
8	Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens. Processes, 2021, 9, 890.	1.3	5
9	Screening of Some Romanian Raw Honeys and Their Probiotic Potential Evaluation. Applied Sciences (Switzerland), 2021, 11, 5816.	1.3	8
10	Standard methods for pollen research. Journal of Apicultural Research, 2021, 60, 1-109.	0.7	25
11	Phenolic substances and cyanogenesis in galled and non-galled tissue of the fern species Microgramma vacciniifolia. Brazilian Journal of Biology, 2021, 82, e236151.	0.4	1
12	Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa. Antibiotics, 2021, 10, 1514.	1.5	4
13	Vascular effects of a polyphenolic fraction from <i>Oxalis pes-caprae</i> L.: role of α-adrenergic receptors Sub-types. Natural Product Research, 2020, 34, 3369-3372.	1.0	3
14	Antioxidant content and identification of phenolic/flavonoid compounds in the pollen of fourteen plants using HPLC-DAD. Journal of Apicultural Research, 2020, 59, 35-41.	0.7	26
15	Seasonal variation of flavonoid content in bee bread: Potential impact on hypopharyngeal gland development in <i>Apis mellifera</i> honey bees. Journal of Apicultural Research, 2020, 59, 170-177.	0.7	6
16	Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacological Research, 2020, 151, 104584.	3.1	155
17	Development and validation of a RP-HPLC method for the simultaneous analysis of paracetamol, ibuprofen, olanzapine, and simvastatin during microalgae bioremediation. MethodsX, 2020, 7, 101083.	0.7	8

Maria Graça Campos

#	Article	IF	CITATIONS
19	New Insights into the Biological and Pharmaceutical Properties of Royal Jelly. International Journal of Molecular Sciences, 2020, 21, 382.	1.8	131
20	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	3.7	1
21	Gamma Irradiated Rhodiola sachalinensis Extract Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia by Downregulating 5-Alpha Reductase and Restoring Testosterone in Rats. Molecules, 2019, 24, 3981.	1.7	4
22	Enzyme Inhibitory Potential of Ligustrum lucidum Aiton Berries. Molecules, 2019, 24, 1283.	1.7	2
23	Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. Science Progress, 2019, 102, 3-42.	1.0	96
24	Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits. Antioxidants, 2019, 8, 568.	2.2	92
25	Mururé (Brosimum acutifolium Huber) in the treatment of syphilis in colonial Amazonia: historical data to the actual contribution to treatment. Acta Botanica Brasilica, 2019, 33, 183-190.	0.8	3
26	A REVIEW ON CYCLAMEN SPECIES: TRANSCRIPTION FACTORS VS. PHARMACOLOGICAL EFFECTS. Acta Poloniae Pharmaceutica, 2019, 76, 919-938.	0.3	3
27	Monitoring oil production for biobased feedstock in the microalga Nannochloropsis sp.: a novel method combining the BODIPY BD-C12 fluorescent probe and simple image processing. Journal of Applied Phycology, 2018, 30, 2273-2285.	1.5	7
28	Chamomile reveals to be a potent galactogogue: the unexpected effect. Journal of Maternal-Fetal and Neonatal Medicine, 2018, 31, 116-118.	0.7	12
29	Polyphenolic characterisation and bioactivity of an <i>Oxalis pes</i> - <i>caprae</i> L. leaf extract. Natural Product Research, 2018, 32, 732-738.	1.0	11
30	Screening of Biological Activities of <i>Ligustrum lucidum</i> Berries: A Comparative Approach. Natural Product Communications, 2018, 13, 1934578X1801301.	0.2	0
31	Similarity of Data from Bee Bread with the Same Taxa Collected in India and Romania. Molecules, 2018, 23, 2491.	1.7	49
32	Hepatotoxicity induced by paclitaxel interaction with turmeric in association with a microcystin from a contaminated dietary supplement. Toxicon, 2018, 150, 207-211.	0.8	29
33	Case Report: Severe Hematological, Muscle and Liver Toxicity Caused by Drugs and Artichoke Infusion Interaction in an Elderly Polymedicated Patient. Current Drug Safety, 2018, 13, 44-50.	0.3	13
34	Chemical Composition of Bee Pollen. , 2017, , 221-259.		11
35	Herb-Drug Interactions: An Insight into Cardiovascular Diseases Based on Case Reports. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2017, 14, 142-149.	0.4	2
36	Algae as Functional Foods for the Elderly. Food and Nutrition Sciences (Print), 2016, 07, 1122-1148.	0.2	5

Maria Graça Campos

#	Article	IF	CITATIONS
37	Cyanobacteria and Microalgae: A Renewable Source of Bioactive Compounds and Other Chemicals. Science Progress, 2015, 98, 145-168.	1.0	45
38	Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry, 2015, 169, 218-223.	4.2	226
39	Caffeic acid derivates in spent coffee ground as potential crude material for drug discovery. Planta Medica, 2015, 81, .	0.7	1
40	Zea mays L. Pollen: An Approach to Its Quality Control. Journal of Agricultural Science and Technology B, 2015, 5, .	0.1	1
41	Polyphenol content and free radical scavenging activity of bee pollen collected in Castelo Branco, Portugal. Planta Medica, 2015, 81, .	0.7	Ο
42	Phenols, Flavonoids, and Antioxidant and Antibacterial Activity of Leaves and Stem Bark of <i>Morus</i> Species. International Journal of Food Properties, 2014, 17, 842-854.	1.3	59
43	Therapeutic potential of pollen. Planta Medica, 2014, 80, .	0.7	1
44	Determination of structural phenolic compounds of Acacia dealbata pollen by HPLC/DAD. Planta Medica, 2014, 80, .	0.7	2
45	Variabilidad de los Perfiles Fenólicos Foliares del Complejo Agave victoriae-reginae (Agavaceae) Botanical Sciences, 2014, 91, 295.	0.3	20
46	Identification and quantification of phenolic acids and flavonol glycosides in Tunisian Morus species by HPLC-DAD and HPLC–MS. Journal of Functional Foods, 2012, 4, 367-374.	1.6	97
47	Bioactivity of Isoflavones: Assessment through a Theoretical Model as a Way to Obtain a "Theoretical Efficacy Related to Estradiol (TERE)â€: International Journal of Molecular Sciences, 2010, 11, 480-491.	1.8	6
48	What is the future of Bee-Pollen?. Journal of ApiProduct and ApiMedical Science, 2010, 2, 131-144.	0.4	110
49	In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chemistry, 2009, 115, 878-883.	4.2	138
50	Plants with neurobiological activity as potential targets for drug discovery. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 1372-1389.	2.5	70
51	Assessment of luteolin (3′,4′,5,7-tetrahydroxyflavone) neuropharmacological activity. Behavioural Brain Research, 2008, 189, 75-82.	1.2	93
52	Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 2008, 47, 154-161.	0.7	311
53	Pollen Flavonoid/Phenolic Acid Composition of Four Species of Cactaceae and its Taxonomic Significance. American Journal of Agricultural and Biological Science, 2008, 3, 534-543.	0.9	8
54	Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 2008, 47, 154-161.	0.7	50

#	Article	IF	CITATIONS
55	Antioxidant activity of polyphenolic extract of monofloral honeybee-collected pollen from mesquite (Prosopis juliflora, Leguminosae). Journal of Food Composition and Analysis, 2007, 20, 119-124.	1.9	122
56	The variability of isoflavones in soy seeds and the possibility of obtaining extracts for over the counter tablet preparations that can be standardized. Industrial Crops and Products, 2007, 26, 85-92.	2.5	12
57	Structure information from HPLC and on-line measured absorption spectra: flavones, flavonols and phenolic acids. , 2007, , .		33
58	Comparative Analysis of Over-the-Counter Tablet Preparations of Isoflavones Extracted from Soy Available in Portugal. Natural Product Communications, 2006, 1, 1934578X0600101.	0.2	2
59	Neuropharmacological evaluation of the putative anxiolytic effects ofPassiflora edulis Sims, its sub-fractions and flavonoid constituents. Phytotherapy Research, 2006, 20, 1067-1073.	2.8	82
60	Age-Induced Diminution of Free Radical Scavenging Capacity in Bee Pollens and the Contribution of Constituent Flavonoids. Journal of Agricultural and Food Chemistry, 2003, 51, 742-745.	2.4	145
61	The Unique Occurrence of the Flavone Aglycone Tricetin in Myrtaceae Pollen. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 944-946.	0.6	28
62	Comparative Evaluation of Melissa officinalis L., Tilia europaea L., Passiflora edulis Sims. and Hypericum perforatum L. in the Elevated Plus Maze Anxiety Test. Pharmacopsychiatry, 2001, 34, 20-21.	1.7	66
63	An unusually lipophilic flavonol glycoside from Ranunculus sardous pollen. Phytochemistry, 1997, 45, 203-204.	1.4	16
64	An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochemical Analysis, 1997, 8, 181-185.	1.2	103
65	7- and 8-O-methylherbacetin-3-O-sophorosides from bee pollens and some structure/activity observations. Phytochemistry, 1996, 43, 763-767.	1.4	49
66	Characterization of Flavonoids in Three Hive Products: Bee Pollen, Propolis, and Honey. Planta Medica, 1990, 56, 580-581.	0.7	16
67	Possible Risks in Caucasians by Consumption of Isoflavones Extracts Based. , 0, , .		2
68	Chemical composition and free radical-scavenging activities of monofloral bee pollen from <i>Mimosa pudica</i> L. Journal of Apicultural Research, 0, , 1-8.	0.7	3