Aneta Jezierska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766578/publications.pdf

Version: 2024-02-01

516561 526166 61 888 16 27 citations g-index h-index papers 62 62 62 980 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Impact of intermolecular hydrogen bond on structural properties of phenylboronic acid: quantum chemical and Xâ€ray study. Journal of Physical Organic Chemistry, 2008, 21, 472-482.	0.9	80
2	Car-Parrinello simulation of an O–H stretching envelope and potential of mean force of an intramolecular hydrogen bonded system: Application to a Mannich base in solid state and in vacuum. Journal of Chemical Physics, 2007, 126, 205101.	1.2	61
3	Synthesis, analgesic activity and computational study of new isothiazolopyridines of Mannich base type. Il Farmaco, 2005, 60, 961-968.	0.9	55
4	Modeling Toxicity by Using Supervised Kohonen Neural Networks. Journal of Chemical Information and Computer Sciences, 2003, 43, 485-492.	2.8	46
5	Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses. Molecular Diversity, 2010, 14, 581-594.	2.1	45
6	Density Functional Calculation of the 2D Potential Surface and Deuterium Isotope Effect on 13C Chemical Shifts in Picolinic AcidN-Oxide. Comparison with Experiment. Journal of the American Chemical Society, 2004, 126, 4437-4443.	6.6	42
7	On the Oligomeric State of DJ-1 Protein and Its Mutants Associated with Parkinson Disease. Journal of Biological Chemistry, 2007, 282, 24905-24914.	1.6	30
8	H-Bonded Complexes of Aniline with HF/F ^{â^'} and Anilide with HF in Terms of Symmetry-Adapted Perturbation, Atoms in Molecules, and Natural Bond Orbitals Theories. Journal of Physical Chemistry A, 2008, 112, 9895-9905.	1.1	27
9	Correlations of NBO energies of individual hydrogen bonds in nucleic acid base pairs with some QTAIM parameters. Structural Chemistry, 2016, 27, 367-376.	1.0	25
10	Spectroscopic Properties of a Strongly Anharmonic Mannich Base Nâ€oxide. ChemPhysChem, 2008, 9, 839-846.	1.0	24
11	Molecular Modeling Study of Leflunomide and Its Active Metabolite Analogues. Journal of Chemical Information and Modeling, 2005, 45, 39-48.	2.5	22
12	Symmetry-Adapted Perturbation Theory Analysis of the N···HX Hydrogen Bonds. Journal of Physical Chemistry A, 2007, 111, 650-655.	1.1	22
13	Structural and spectroscopic properties of an aliphatic boronic acid studied by combination of experimental and theoretical methods. Journal of Chemical Physics, 2008, 128, 124512.	1.2	22
14	Fluconazole and Lipopeptide Surfactin Interplay During Candida albicans Plasma Membrane and Cell Wall Remodeling Increases Fungal Immune System Exposure. Pharmaceutics, 2020, 12, 314.	2.0	22
15	First-Principle Molecular Dynamics Study of Selected Schiff and Mannich Bases:  Application of Two-Dimensional Potential of Mean Force to Systems with Strong Intramolecular Hydrogen Bonds. Journal of Chemical Theory and Computation, 2008, 4, 375-384.	2.3	21
16	Carâ°'Parrinello Molecular Dynamics Study of Anharmonic Systems:Â A Mannich Base in Solution. Journal of Physical Chemistry B, 2007, 111, 5243-5248.	1.2	20
17	Counter-propagation artificial neural network as a tool for the independent variable selection: Structure-mutagenicity study on aromatic amines. Molecular Diversity, 2004, 8, 371-377.	2.1	16
18	Kohonen Network Study of Aromatic Compounds Based on Electronic and Nonelectronic Structure Descriptors. Journal of Chemical Information and Modeling, 2005, 45, 264-272.	2.5	15

#	Article	IF	CITATIONS
19	Structural and electronic structure differences due to the O–H···O and O–H···S bond formation in selected benzamide derivatives: a first-principles molecular dynamics study. Theoretical Chemistry Accounts, 2009, 124, 319-330.	0.5	15
20	A combined experimental and theoretical study of benzoxaborole derivatives by Raman and IR spectroscopy, static DFT, and firstâ€principle molecular dynamics. Journal of Physical Organic Chemistry, 2010, 23, 451-460.	0.9	14
21	New diphenylphosphane derivatives of ketoconazole are promising antifungal agents. Scientific Reports, 2019, 9, 16214.	1.6	14
22	Intramolecular Hydrogen Bonds in Selected Aromatic Compounds: Recent Developments. Catalysts, 2019, 9, 909.	1.6	14
23	Investigations of an OH · · · S hydrogen bond via Carâ€Parrinello and path integral molecular dynamics. Journal of Computational Chemistry, 2009, 30, 1241-1250.	1.5	13
24	Inter- vs. Intramolecular Hydrogen Bond Patterns and Proton Dynamics in Nitrophthalic Acid Associates. Molecules, 2020, 25, 4720.	1.7	13
25	Structure/Activity Investigations of 5-Substituted 3-Methylisoxazole[5, 4-d]1, 2, 3-triazin-4-one Derivatives. Archiv Der Pharmazie, 2004, 337, 81-89.	2.1	12
26	"Zwitterionic Proton Sponge―Hydrogen Bonding Investigations on the Basis of Car–Parrinello Molecular Dynamics. Journal of Chemical Information and Modeling, 2015, 55, 1148-1157.	2.5	12
27	Hydrogen bonds in quinoline N-oxide derivatives: first-principle molecular dynamics and metadynamics ground state study. Structural Chemistry, 2016, 27, 65-75.	1.0	12
28	A molecular roundabout: triple cyclically arranged hydrogen bonds in light of experiment and theory. New Journal of Chemistry, 2018, 42, 19467-19477.	1.4	10
29	DFT study of a novel lead structure in the isoxazole heterocyclic system. Computational and Theoretical Chemistry, 2003, 636, 203-214.	1.5	8
30	Effects of tryptophan residue fluorination on streptavidin stability and biotin–streptavidin interactions via molecular dynamics simulations. Journal of Molecular Modeling, 2009, 15, 257-266.	0.8	8
31	A complex study of 5-amino-3-methyl-4-[2-(5-amino-1,3,4-oxadiazolo)]-isoxazole monohydrate: A new low-molecular-weight immune response modifier. Journal of Molecular Structure, 2011, 999, 60-67.	1.8	8
32	<i>p</i> â€Nitrobenzoic Acid Adsorption on Nanostructured Gold Surfaces Investigated by Combined Experimental and Computational Approaches. ChemPhysChem, 2011, 12, 2485-2495.	1.0	8
33	Cooperativity of hydrogen bonding network in microsolvated biotin, the ligand of avidin class proteins. Journal of Molecular Modeling, 2019, 25, 361.	0.8	8
34	Symmetry/Asymmetry of the NHN Hydrogen Bond in Protonated 1,8-Bis(dimethylamino)naphthalene. Symmetry, 2020, 12, 1924.	1.1	8
35	Theoretical study of intramolecular hydrogen bond in selected symmetric "proton sponges―on the basis of DFT and CPMD methods. Journal of Molecular Modeling, 2020, 26, 37.	0.8	8
36	Molecular Properties Investigation of a Substituted Aromatic Mannich Base:  Dynamic and Static Models. Journal of Chemical Information and Modeling, 2007, 47, 818-831.	2.5	7

#	Article	IF	Citations
37	Molecular reorganization of selected quinoline derivatives in the ground and excited states—Investigations via static DFT. Journal of Chemical Physics, 2015, 143, 034301.	1.2	7
38	New anticandidal Cu(<scp>i</scp>) complexes with neocuproine and ketoconazole derived diphenyl(aminomethyl)phosphane: luminescence properties for detection in fungal cells. Dalton Transactions, 2020, 49, 8528-8539.	1.6	7
39	On the nature of inter- and intramolecular interactions involving benzo[h]quinoline and 10-hydroxybenzo[h]quinoline: Electronic ground state vs excited state study. Journal of Molecular Structure, 2021, 1234, 130126.	1.8	7
40	Synthesis, X-ray crystal structure and DFT study of potential ligands of (2Z)-3-[(2-hydroxyphenyl)amino]-1-phenylâ€alk―2-en-1-one type. Journal of Molecular Structure, 2007, 839, 33-40.	1.8	6
41	N-oxide Derivatives: Car–Parrinello Molecular Dynamics and Electron Localization Function Study on Intramolecular Hydrogen Bonds. Journal of Physical Chemistry A, 2018, 122, 6605-6614.	1.1	6
42	Competition of Intra- and Intermolecular Forces in Anthraquinone and Its Selected Derivatives. Molecules, 2021, 26, 3448.	1.7	6
43	Non-Covalent Forces in Naphthazarin—Cooperativity or Competition in the Light of Theoretical Approaches. International Journal of Molecular Sciences, 2021, 22, 8033.	1.8	6
44	Biological Evaluation and Molecular Docking Studies of Novel 1,3,4-Oxadiazole Derivatives of 4,6-Dimethyl-2-sulfanylpyridine-3-carboxamide. International Journal of Molecular Sciences, 2022, 23, 549.	1.8	6
45	Interrelations between the Mesomeric and Electronegativity Effects in <i>Para</i> -Substituted Derivatives of Phenol/Phenolate and Aniline/Anilide H-Bonded Complexes: A DFT-Based Computational Study. Journal of Physical Chemistry A, 2009, 113, 5800-5805.	1.1	5
46	Structure-Property Relationship in Selected Naphtho- and Anthra-Quinone Derivatives on the Basis of Density Functional Theory and Car–Parrinello Molecular Dynamics. Symmetry, 2021, 13, 564.	1.1	5
47	Naphthazarin Derivatives in the Light of Intra- and Intermolecular Forces. Molecules, 2021, 26, 5642.	1.7	5
48	An experimental and theoretical structural study of 5-amino-3-methylisoxazolo-4-carboxylic acid p-chlorophenylamide. Journal of Molecular Modeling, 2003, 9, 159-163.	0.8	4
49	Solvent influence on the rotational isomerism in terephthalaldehyde. Structural Chemistry, 2006, 17, 177-188.	1.0	4
50	Hydrogen bridges of polycyclic aromatic systems with O-H···O bonds â€" a gas-phase vs. solid-state Car-Parrinello study. Journal of Molecular Modeling, 2015, 21, 15.	0.8	4
51	Structural property investigations of 1-[2-(2-methoxyphenyl)ethyl]piperidinium chloride: An experimental and computational study. Journal of Molecular Structure, 2008, 891, 184-191.	1.8	3
52	Microsolvation of Histidineâ€"A Theoretical Study of Intermolecular Interactions Based on AIM and SAPT Approaches. Symmetry, 2020, 12, 1153.	1.1	3
53	How Substitution Combines with Non-Covalent Interactions to Modulate 1,4-Naphthoquinone and Its Derivatives Molecular Features—Multifactor Studies. International Journal of Molecular Sciences, 2021, 22, 10357.	1.8	3
54	Exploring Intra- and Intermolecular Interactions in Selected N-Oxidesâ€"The Role of Hydrogen Bonds. Molecules, 2022, 27, 792.	1.7	3

ANETA JEZIERSKA

#	Article	IF	CITATIONS
55	N–Hâ <o 2015,="" 21,="" 47.<="" a="" and="" calculation="" density="" dynamics="" first="" functional="" journal="" modeling,="" molecular="" n-oxide.="" of="" on="" o–hâ<o:="" principle="" quinoline-2-carboxamide="" study="" td="" versus=""><td>0.8</td><td>2</td></o>	0.8	2
56	Sensitivity of Intra- and Intermolecular Interactions of Benzo[h]quinoline from Car–Parrinello Molecular Dynamics and Electronic Structure Inspection. International Journal of Molecular Sciences, 2021, 22, 5220.	1.8	2
57	Inside out Approach to Rotator State in Hydrogen-Bonded Systemâ€"Experimental and Theoretical Cross-Examination in n-Octanol. International Journal of Molecular Sciences, 2022, 23, 2138.	1.8	2
58	Interactions between Artificial Channel Protein, Water Molecules, and Ions Based on Theoretical Approaches. Symmetry, 2022, 14, 691.	1.1	2
59	Intermolecular Interactions and Spectroscopic Signatures of the Hydrogen-Bonded System—n-Octanol in Experimental and Theoretical Studies. Molecules, 2022, 27, 1225.	1.7	1
60	Molecular Modeling Study of Leflunomide and Its Active Metabolite Analogues ChemInform, 2005, 36, no.	0.1	0
61	Revealing Intra- and Intermolecular Interactions Determining Physico-Chemical Features of Selected Quinolone Carboxylic Acid Derivatives. Molecules, 2022, 27, 2299.	1.7	0