
Yang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7665394/publications.pdf Version: 2024-02-01

VANC 7HANC

#	Article	IF	CITATIONS
1	Photoactivatable BODIPYs Designed To Monitor the Dynamics of Supramolecular Nanocarriers. Journal of the American Chemical Society, 2015, 137, 4709-4719.	6.6	72
2	Far-Red Photoactivatable BODIPYs for the Super-Resolution Imaging of Live Cells. Journal of the American Chemical Society, 2018, 140, 12741-12745.	6.6	71
3	Detection of nitroaromatic explosives by a 3D hyperbranched σ‑ï̃€ conjugated polymer based on a POSS scaffold. Journal of Materials Chemistry A, 2017, 5, 14343-14354.	5.2	44
4	Facile fabrication of AIE/AIEE-active fluorescent nanoparticles based on barbituric for cell imaging applications. RSC Advances, 2017, 7, 30229-30241.	1.7	38
5	Fluorescence activation with switchable oxazines. Chemical Communications, 2018, 54, 8799-8809.	2.2	37
6	Photochemical Barcodes. Journal of the American Chemical Society, 2018, 140, 4485-4488.	6.6	36
7	Multicolor super-resolution imaging using spectroscopic single-molecule localization microscopy with optimal spectral dispersion. Applied Optics, 2019, 58, 2248.	0.9	35
8	A fluorescent and halochromic indolizine switch. Journal of Materials Chemistry C, 2016, 4, 2744-2747.	2.7	29
9	A Photoactivatable Far-Red/Near-Infrared BODIPY To Monitor Cellular Dynamics in Vivo. ACS Sensors, 2018, 3, 1347-1353.	4.0	29
10	Bioimaging with Macromolecular Probes Incorporating Multiple BODIPY Fluorophores. Bioconjugate Chemistry, 2017, 28, 1519-1528.	1.8	28
11	Three-dimensional biplane spectroscopic single-molecule localization microscopy. Optica, 2019, 6, 709.	4.8	28
12	Symmetrically dispersed spectroscopic single-molecule localization microscopy. Light: Science and Applications, 2020, 9, 92.	7.7	26
13	Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning. Biomedical Optics Express, 2020, 11, 2705.	1.5	26
14	A Photoswitchable Fluorophore for the Realâ€Time Monitoring of Dynamic Events in Living Organisms. Chemistry - A European Journal, 2016, 22, 15027-15034.	1.7	25
15	Highlighting Cancer Cells with Halochromic Switches. ACS Sensors, 2017, 2, 92-101.	4.0	20
16	BODIPYs with Photoactivatable Fluorescence. Chemistry - A European Journal, 2021, 27, 11257-11267.	1.7	20
17	Compact, "Clickable―Quantum Dots Photoligated with Multifunctional Zwitterionic Polymers for Immunofluorescence and <i>In Vivo</i> Imaging. Bioconjugate Chemistry, 2020, 31, 1497-1509.	1.8	19
18	Energy-Transfer Schemes To Probe Fluorescent Nanocarriers and Their Emissive Cargo. Langmuir, 2015, 31, 9557-9565.	1.6	18

YANG ZHANG

#	Article	IF	CITATIONS
19	Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods and Applications in Fluorescence, 2020, 8, 032002.	1.1	15
20	Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores. Bioconjugate Chemistry, 2020, 31, 1052-1062.	1.8	14
21	Machine-learning based spectral classification for spectroscopic single-molecule localization microscopy. Optics Letters, 2019, 44, 5864.	1.7	14
22	High-Throughput Single-Molecule Spectroscopy Resolves the Conformational Isomers of BODIPY Chromophores. Journal of Physical Chemistry Letters, 2019, 10, 6807-6812.	2.1	13
23	Super-Resolution Imaging of Self-Assembled Nanocarriers Using Quantitative Spectroscopic Analysis for Cluster Extraction. Langmuir, 2020, 36, 2291-2299.	1.6	13
24	Optical writing and reading with a photoactivatable carbazole. Physical Chemistry Chemical Physics, 2015, 17, 11140-11143.	1.3	12
25	Investigating Single-Molecule Fluorescence Spectral Heterogeneity of Rhodamines Using High-Throughput Single-Molecule Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 3914-3921.	2.1	12
26	Synthesis in living cells with the assistance of supramolecular nanocarriers. RSC Advances, 2016, 6, 32441-32445.	1.7	11
27	Fluorescence patterning with mild illumination in polymer films of photocleavable oxazines. Journal of Materials Chemistry C, 2017, 5, 1179-1183.	2.7	11
28	A photoactivatable light tracer. Journal of Materials Chemistry C, 2017, 5, 12714-12719.	2.7	11
29	Semiconductor Quantum Dots with Photoresponsive Ligands. Topics in Current Chemistry, 2016, 374, 73.	3.0	10
30	Monolithic dual-wedge prism-based spectroscopic single-molecule localization microscopy. Nanophotonics, 2022, 11, 1527-1535.	2.9	9
31	Supramolecular delivery of fluorescent probes in developing embryos. RSC Advances, 2016, 6, 72756-72760.	1.7	7
32	Self-Assembling Nanoparticles of Amphiphilic Polymers for In Vitro and In Vivo FRET Imaging. Topics in Current Chemistry, 2016, 370, 29-59.	4.0	6
33	RainbowSTORM: an open-source ImageJ plug-in for spectroscopic single-molecule localization microscopy (sSMLM) data analysis and image reconstruction. Bioinformatics, 2020, 36, 4972-4974.	1.8	6
34	A pHâ€Gated Photocage. Advanced Optical Materials, 2016, 4, 1363-1366.	3.6	4
35	Super-resolution imaging of flat-mounted whole mouse cornea. Experimental Eye Research, 2021, 205, 108499.	1.2	4
36	Two-Photon Absorption Properties of <i>s</i> -Triazine Derivatives With Near Octupolar Symmetry. Advanced Materials Research, 0, 652-654, 542-545.	0.3	1

YANG ZHANG

#	Article	IF	CITATIONS
37	Far-red photoactivatable BODIPYs for the super-resolution imaging of live cells. Methods in Enzymology, 2020, 640, 131-147.	0.4	1
38	Optical Properties of Chromophores with Different Six-Membered N-Heterocyclic Aromatic Ring. Advanced Materials Research, 2011, 236-238, 1598-1602.	0.3	0
39	Supramolecular nanocarriers with photoresponsive cargo. Proceedings of SPIE, 2016, , .	0.8	0
40	Probing the intracellular fate of supramolecular nanocarriers and their cargo with FRET schemes. Proceedings of SPIE, 2017, , .	0.8	0
41	Supramolecular delivery of photoactivatable fluorophores in developing embryos. , 2017, , .		0
42	Highlighting cancer cells with macromolecular probes. Proceedings of SPIE, 2017, , .	0.8	0
43	Frontispiece: BODIPYs with Photoactivatable Fluorescence. Chemistry - A European Journal, 2021, 27, .	1.7	0
44	Semiconductor Quantum Dots with Photoresponsive Ligands. Topics in Current Chemistry Collections, 2017, , 31-60.	0.2	0
45	Bright and compact macromolecular probes for bioimaging applications. , 2018, , .		Ο