Tatyana V Yaroslavtseva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7665133/publications.pdf

Version: 2024-02-01

25 papers 340 citations

840776 11 h-index 18 g-index

25 all docs

25 docs citations

25 times ranked

343 citing authors

#	Article	IF	CITATIONS
1	Extreme behavior of Li-ion conductivity in the Li2O–Al2O3–P2O5 glass system. Journal of Non-Crystalline Solids, 2015, 430, 64-72.	3.1	38
2	New lithium salts in electrolytes for lithium-ion batteries (Review). Russian Journal of Electrochemistry, 2017, 53, 677-699.	0.9	37
3	The influence of lithium oxide concentration on the transport properties of glasses in the Li2O–B2O3–SiO2 system. Journal of Non-Crystalline Solids, 2016, 443, 75-81.	3.1	32
4	Electrochemical performance and surface chemistry of nanoparticle Si@SiO2 Li-ion battery anode in LiPF6-based electrolyte. Electrochimica Acta, 2016, 208, 109-119.	5.2	28
5	Conductivity and spectroscopic studies of Li2O-V2O5-B2O3 glasses. Ionics, 2018, 24, 1929-1938.	2.4	28
6	Specific features of preparation of dense ceramic based on barium zirconate. Semiconductors, 2014, 48, 1353-1358.	0.5	21
7	Heat Capacity of Molten Halides. Journal of Physical Chemistry B, 2015, 119, 509-512.	2.6	19
8	Isobaric heat capacity of molten halide eutectics. Journal of Thermal Analysis and Calorimetry, 2017, 128, 621-626.	3.6	15
9	Ion–molecular and ion–ion interactions in solvent-free polymer electrolytes based on amorphous butadiene — acrylontrile copolymer and LiAsF6. Solid State Ionics, 2008, 178, 1817-1830.	2.7	14
10	Heat of fusion of halide salts and their eutectics. Journal of Thermal Analysis and Calorimetry, 2018, 131, 2021-2026.	3.6	14
11	Lithiated Nafion plasticised by a mixture of ethylene carbonate and sulfolane. Electrochimica Acta, 2021, 373, 137914.	5.2	14
12	Li-Nafion Membrane Plasticised with Ethylene Carbonate/Sulfolane: Influence of Mixing Temperature on the Physicochemical Properties. Polymers, 2021, 13, 1150.	4.5	11
13	Glass transitions and ionic conductivity in a poly(butadiene-acrylonitrile)–LiAsF6 system. Electrochimica Acta, 2011, 57, 212-219.	5.2	10
14	Preparation and physicochemical properties of praseodymium oxide films and ceramics. Inorganic Materials, 2015, 51, 1168-1176.	0.8	10
15	FTIR and quantum chemical study of LiBr solvation in acetonitrile solutions. Vibrational Spectroscopy, 2014, 75, 19-25.	2.2	9
16	IR spectroscopic and quantum-chemical investigation of perchlorate anion solvation in acetonitrile. Russian Journal of Physical Chemistry A, 2015, 89, 76-81.	0.6	9
17	Solid polymer electrolytes in a poly(butadiene-acrylonitrile)–LiBr system. Ionics, 2017, 23, 3347-3363.	2.4	9
18	Solvation of anions in acetonitrile solutions: FTIR and quantum chemical study for Brâ-, ClO4â-, AsF6â-, and CF3SO3â Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117873.	3.9	7

#	Article	IF	CITATIONS
19	Ab initio calculation of the structure and optical properties of lead oxyhalides Pb3O2 X 2 (X = Cl, Br,) Tj ETQq1 1 C	0.784314 r	gβT /Over <mark>lo</mark>
20	Ion aggregation and phase separation in amorphous poly(nitrile)-based lithium conducting polymer electrolytes. Solid State Ionics, 2019, 333, 57-65.	2.7	4
21	Separation of cationic and anionic conductivity constituents in solid polymer electrolytes comprising a copolymer of acrylonitrile and butadiene (40:60) and lithium hexafluoroarsenate. Russian Journal of Electrochemistry, 2007, 43, 410-417.	0.9	2
22	Electrical conductivity and thermoelectric power of La1–x Li x CoO3–Î′ (0 ≠x ≠0.1) oxides. Physics of the Solid State, 2016, 58, 2385-2393.	0.6	2
23	Synthesis, Structure, and Thermal Properties of Ca5Ga6O14. Russian Journal of Physical Chemistry A, 2018, 92, 1243-1247.	0.6	2
24	Quantum-Chemical and IR Spectroscopic Study of Ionic Association in Solutions of LiCF3SO3 in Acetonitrile. Russian Journal of Physical Chemistry A, 2020, 94, 933-938.	0.6	1
25	Electrical properties of the LaLiyCo1 – yO3 – δ (0 ≠y ≠0.10) oxides. Russian Metallurgy (Metally), 2017, 2017, 664-669.	' 0.5	0