Bo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7665078/publications.pdf

Version: 2024-02-01

623734 580821 32 660 14 25 h-index citations g-index papers 33 33 33 443 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Seed size, more than nutrient or tannin content, affects seed caching behavior of a common genus of Old World rodents. Ecology, 2009, 90, 3023-3032.	3 . 2	118
2	Dissecting the decision making process of scatterâ€hoarding rodents. Oikos, 2013, 122, 1027-1034.	2.7	62
3	Tannin concentration enhances seed caching by scatter-hoarding rodents: An experiment using artificial â€~seeds'. Acta Oecologica, 2008, 34, 379-385.	1.1	48
4	Tree-to-tree variation in seed size and its consequences for seed dispersal versus predation by rodents. Oecologia, 2017, 183, 751-762.	2.0	48
5	Scatter-hoarding rodents use different foraging strategies for seeds from different plant species. Plant Ecology, 2012, 213, 1329-1336.	1.6	32
6	Postâ€dispersal seed predation and its relations with seed traits: a thirtyâ€speciesâ€comparative study. Plant Species Biology, 2015, 30, 193-201.	1.0	29
7	Effects of fragmentation on the seed predation and dispersal by rodents differ among species with different seed size. Integrative Zoology, 2017, 12, 468-476.	2.6	28
8	Effects of Fat and Protein Levels on Foraging Preferences of Tannin in Scatter-Hoarding Rodents. PLoS ONE, 2012, 7, e40640.	2.5	27
9	Scatterâ€hoarding rodents select different caching habitats for seeds with different traits. Ecosphere, 2017, 8, e01774.	2.2	26
10	Teasing Apart the Effects of Seed Size and Energy Content on Rodent Scatter-Hoarding Behavior. PLoS ONE, 2014, 9, e111389.	2.5	24
11	Scatter-hoarding rodents are better pilferers than larder-hoarders. Animal Behaviour, 2018, 141, 151-159.	1.9	23
12	Scatter-Hoarding Rodents Prefer Slightly Astringent Food. PLoS ONE, 2011, 6, e26424.	2.5	21
13	Tradeoff between physical and chemical defense in plant seeds is mediated by seed mass. Oikos, 2018, 127, 440-447.	2.7	18
14	Factors influencing repeated seed movements by scatter-hoarding rodents in an alpine forest. Scientific Reports, 2014, 4, 4786.	3.3	17
15	Seed density affects postâ€dispersal seed predation: evidence from a seed removal experiment of 62 species. Integrative Zoology, 2020, 15, 135-143.	2.6	15
16	Differential seed mass selection on hoarding decisions among three sympatric rodents. Behavioral Ecology and Sociobiology, 2018, 72, 1.	1.4	14
17	Seed size affects rodent–seed interaction consistently across plant species but not within species: evidence from a seed tracking experiment of 41 tree species. Integrative Zoology, 2022, 17, 930-943.	2.6	12
18	Seed removal by scatter-hoarding rodents: The effects of tannin and nutrient concentration. Behavioural Processes, 2015, 113, 94-98.	1.1	11

#	Article	IF	CITATIONS
19	An allometry between seed kernel and seed coat shows greater investment in physical defense in small seeds. American Journal of Botany, 2019, 106, 371-376.	1.7	11
20	Phylogenetic conservatism explains why plants are more likely to produce fleshy fruits in the tropics. Ecology, 2022, 103, e03555.	3.2	11
21	Directed seed dispersal by scatter-hoarding rodents into areas with a low density of conspecific seeds in the absence of pilferage. Journal of Mammalogy, 2017, 98, 1682-1687.	1.3	10
22	Mutual cheating strengthens a tropical seed dispersal mutualism. Ecology, 2022, 103, e03574.	3.2	8
23	Neighborhood effects on the tanninâ€related foraging decisions of two rodent species under semiâ€natural conditions. Integrative Zoology, 2020, 15, 569-577.	2.6	7
24	Macroevolutionary patterns in seed component mass and different evolutionary trajectories across seed desiccation responses. New Phytologist, 2020, 228, 770-777.	7. 3	7
25	Fine-scale spatiotemporal variation in seed-rodent interactions: A potential contribution to species coexistence. Forest Ecology and Management, 2021, 498, 119566.	3.2	6
26	Scatter-hoarding rodent foraging preference on nutrient content is mediated by seed size. Environmental Epigenetics, 2020, 66, 445-446.	1.8	5
27	Changes in seed predation along a 2300â€m elevational gradient on a tropical mountain in Myanmar: a standardized test with 32 nonâ€native plant species. Ecography, 2021, 44, 602-611.	4.5	5
28	Neighbour effects do not always show consistent patterns, contrast of seed trait matters: evidence from a seed-rodent mutualism study. Behavioral Ecology and Sociobiology, 2020, 74, 1.	1.4	4
29	Canopy openness of individual tree promotes seed dispersal by scatter-hoarding rodents. Forest Ecology and Management, 2022, 507, 120016.	3.2	4
30	Do dispersers shape diaspore mass in vespicochory?. Ecology, 2021, 102, e03302.	3.2	3
31	Plant–rodent interactions after a heavy snowfall decrease plant regeneration and soil carbon emission in an old-growth forest. Forest Ecosystems, 2021, 8, .	3.1	3
32	Exposure time is an important variable in quantifying postâ€dispersal seed removal. Ecology Letters, 2021, 24, 1522-1525.	6.4	3