M Mar Bernal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7664844/publications.pdf Version: 2024-02-01

M MAD REDNAL

#	Article	IF	CITATIONS
1	Graphene filled polymer nanocomposites. Journal of Materials Chemistry, 2011, 21, 3301-3310.	6.7	666
2	Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. RSC Advances, 2014, 4, 7911.	1.7	59
3	In situ Foaming Evolution of Flexible Polyurethane Foam Nanocomposites. Macromolecular Chemistry and Physics, 2011, 212, 971-979.	1.1	53
4	Comparing the effect of carbon-based nanofillers on the physical properties of flexible polyurethane foams. Journal of Materials Science, 2012, 47, 5673-5679.	1.7	50
5	Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation. 2D Materials, 2016, 3, 035014.	2.0	42
6	Threading through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers. ACS Nano, 2016, 10, 8012-8018.	7.3	30
7	Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber. Smart Materials and Structures, 2017, 26, 085010.	1.8	30
8	Thermal bridging of graphene nanosheets via covalent molecular junctions: A non-equilibrium Green's functions–density functional tight-binding study. Nano Research, 2019, 12, 791-799.	5.8	29
9	Fluid dynamics of evolving foams. Physical Chemistry Chemical Physics, 2009, 11, 10860.	1.3	27
10	Optimization and Insights into the Mechanism of Formation of Mechanically Interlocked Derivatives of Singleâ€Walled Carbon Nanotubes. ChemPlusChem, 2015, 80, 1153-1157.	1.3	26
11	Inherent predominance of high chiral angle metallic carbon nanotubes in continuous fibers grown from a molten catalyst. Nanoscale, 2016, 8, 4236-4244.	2.8	26
12	Effect of hard segment content and carbon-based nanostructures on the kinetics of flexible polyurethane nanocomposite foams. Polymer, 2012, 53, 4025-4032.	1.8	23
13	Thermally and Electrically Conductive Nanopapers from Reduced Graphene Oxide: Effect of Nanoflakes Thermal Annealing on the Film Structure and Properties. Nanomaterials, 2017, 7, 428.	1.9	23
14	Effect of carbon nanofillers on flexible polyurethane foaming from a chemical and physical perspective. RSC Advances, 2014, 4, 20761.	1.7	21
15	Reactive Nanocomposite Foams. Frontiers in Forests and Global Change, 2011, 30, 45-62.	0.6	19
16	One-Pot Exfoliation of Graphite and Synthesis of Nanographene/Dimesitylporphyrin Hybrids. International Journal of Molecular Sciences, 2015, 16, 10704-10714.	1.8	17
17	Modification of carbon nanotubes with well-controlled fluorescent styrene-based polymers using the Diels–Alder reaction. Polymer, 2011, 52, 5739-5745.	1.8	15
18	Stereocomplexation of Poly(Lactic Acid)s on Graphite Nanoplatelets: From Functionalized Nanoparticles to Self-assembled Nanostructures. Frontiers in Chemistry, 2019, 7, 176.	1.8	11

#	Article	IF	CITATIONS
19	Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils. ACS Applied Materials & Interfaces, 2021, 13, 15509-15517.	4.0	8
20	Semiconductive bionanocomposites of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyhexanoate) and MWCNTs for neural growth applications. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 349-360.	2.4	4
21	Stronger aramids through molecular design and nanoprocessing. Polymer Chemistry, 2020, 11, 1489-1495.	1.9	4