Erin Goddard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766477/publications.pdf

Version: 2024-02-01

932766 839053 27 417 10 18 citations h-index g-index papers 30 30 30 448 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Spatial and Feature-selective Attention Have Distinct, Interacting Effects on Population-level Tuning. Journal of Cognitive Neuroscience, 2022, 34, 290-312.	1.1	16
2	Neural Coding of Visual Objects Rapidly Reconfigures to Reflect Subtrial Shifts in Attentional Focus. Journal of Cognitive Neuroscience, 2022, 34, 806-822.	1.1	0
3	Exploring Information Flow from Posteromedial Cortex during Visuospatial Working Memory: A Magnetoencephalography Study. Journal of Neuroscience, 2022, 42, 5944-5955.	1.7	5
4	Reaction times predict dynamic brain representations measured with MEG for only some object categorisation tasks. Neuropsychologia, 2021, 151, 107687.	0.7	11
5	Attention selectively enhances stimulus information for surround over foveal stimulus representations in occipital cortex. Journal of Vision, 2021, 21, 20.	0.1	O
6	A humanness dimension to visual object coding in the brain. Neurolmage, 2020, 221, 117139.	2.1	18
7	fMRI representational similarity analysis reveals graded preferences for chromatic and achromatic stimulus contrast across human visual cortex. Neurolmage, 2020, 215, 116780.	2.1	7
8	Temporal evolution of colour representation measured with magnetoencephalography (MEG) Journal of Vision, 2020, 20, 820.	0.1	0
9	Color contrast adaptation: fMRI fails to predict behavioral adaptation. NeuroImage, 2019, 201, 116032.	2.1	12
10	Reevaluating hMT+ and hV4 functional specialization for motion and static contrast using fMRI-guided repetitive transcranial magnetic stimulation. Journal of Vision, 2019, 19, 11.	0.1	5
11	Long-Range Interocular Suppression in Adults with Strabismic Amblyopia: A Pilot fMRI Study. Vision (Switzerland), 2019, 3, 2.	0.5	10
12	fMRI responses to foveal versus peripheral chromatic and achromatic stimuli. Journal of Vision, 2019, 19, 69.	0.1	1
13	Colour and achromatic contrast adaptation: different adaptation effects at detection threshold and suprathreshold contrasts. Journal of Vision, 2019, 19, 9.	0.1	О
14	Interpreting the dimensions of neural feature representations revealed by dimensionality reduction. Neurolmage, 2018, 180, 41-67.	2.1	21
15	Chosts in machine learning for cognitive neuroscience: Moving from data to theory. NeuroImage, 2018, 180, 88-100.	2.1	35
16	fMRI adaptation reveals interactions between responses to achromatic and S-cone isolating stimuli across visual cortex. Journal of Vision, 2018, 18, 362.	0.1	0
17	A step toward understanding the human ventral visual pathway. Journal of Neurophysiology, 2017, 117, 872-875.	0.9	6
18	Dynamic population codes of multiplexed stimulus features in primate area MT. Journal of Neurophysiology, 2017, 118, 203-218.	0.9	11

#	Article	IF	CITATION
19	Representational dynamics of object recognition: Feedforward and feedback information flows. Neurolmage, 2016, 128, 385-397.	2.1	71
20	Dichotomy Versus Continuum: Evidence for a More Complex Agency Model of Visual Object Categorisation. Journal of Vision, 2016, 16, 252.	0.1	0
21	A new type of change blindness: Smooth, isoluminant color changes are monitored on a coarse spatial scale. Journal of Vision, 2013, 13, 20-20.	0.1	5
22	Color responsiveness argues against a dorsal component of human V4. Journal of Vision, 2011, 11, 3-3.	0.1	38
23	Adaptable mechanisms sensitive to surface color in human vision. Journal of Vision, 2010, 10, 17-17.	0.1	14
24	Orientation-selective chromatic mechanisms in human visual cortex. Journal of Vision, 2010, 10, 34-34.	0.1	12
25	Combination of subcortical color channels in human visual cortex. Journal of Vision, 2010, 10, 25-25.	0.1	48
26	Centre-surround effects on perceived orientation in complex images. Vision Research, 2008, 48, 1374-1382.	0.7	22
27	Aftereffect of adaptation to Glass patterns. Vision Research, 2005, 45, 1355-1363.	0.7	27