Taosheng Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/766467/publications.pdf

Version: 2024-02-01

56 2,920 25 51
papers citations h-index g-index

63 63 63 4493 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Biparental Inheritance of Mitochondrial DNA in Humans. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13039-13044.	7.1	349
2	Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 2016, 540, 270-275.	27.8	264
3	Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reproductive BioMedicine Online, 2017, 34, 361-368.	2.4	255
4	Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. Cell Stem Cell, 2016, 18, 625-636.	11.1	190
5	Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015, 524, 234-238.	27.8	166
6	Mutations in SLC25A46, encoding a UGO1-like protein, cause an optic atrophy spectrum disorder. Nature Genetics, 2015, 47, 926-932.	21.4	166
7	Species identification through mitochondrial rRNA genetic analysis. Scientific Reports, 2014, 4, 4089.	3 . 3	111
8	Characterization of mitochondrial DNA heteroplasmy using a parallel sequencing system. BioTechniques, 2010, 48, 287-296.	1.8	103
9	Mutations of Human NARS2, Encoding the Mitochondrial Asparaginyl-tRNA Synthetase, Cause Nonsyndromic Deafness and Leigh Syndrome. PLoS Genetics, 2015, 11, e1005097.	3 . 5	97
10	A deafness-associated tRNA ^{His} mutation alters the mitochondrial function, ROS production and membrane potential. Nucleic Acids Research, 2014, 42, 8039-8048.	14.5	95
11	Neuropathy target esterase impairments cause Oliver–McFarlane and Laurence–Moon syndromes. Journal of Medical Genetics, 2015, 52, 85-94.	3 . 2	91
12	The exome sequencing identified the mutation in YARS2 encoding the mitochondrial tyrosyl-tRNA synthetase as a nuclear modifier for the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Human Molecular Genetics, 2016, 25, 584-596.	2.9	89
13	A splice donor mutation in <i>NAA10</i> results in the dysregulation of the retinoic acid signalling pathway and causes Lenz microphthalmia syndrome. Journal of Medical Genetics, 2014, 51, 185-196.	3.2	86
14	Mitochondrial DNA Variants and Common Diseases: A Mathematical Model for the Diversity of Age-Related mtDNA Mutations. Cells, 2019, 8, 608.	4.1	66
15	Prevalence of Mitochondrial <i>ND4</i> Mutations in 1281 Han Chinese Subjects With Leber's Hereditary Optic Neuropathy., 2015, 56, 4778.		49
16	PRICKLE3 linked to ATPase biogenesis manifested Leber's hereditary optic neuropathy. Journal of Clinical Investigation, 2020, 130, 4935-4946.	8.2	43
17	Loss of SLC25A46 causes neurodegeneration by affecting mitochondrial dynamics and energy production in mice. Human Molecular Genetics, 2017, 26, 3776-3791.	2.9	39
18	Pathobiological Pseudohypoxia as a Putative Mechanism Underlying Myelodysplastic Syndromes. Cancer Discovery, 2018, 8, 1438-1457.	9.4	38

#	Article	IF	CITATIONS
19	Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Research and Therapy, 2016, 7, 2.	5.5	37
20	The Phosphatidylcholine Transfer Protein Stard7 is Required for Mitochondrial and Epithelial Cell Homeostasis. Scientific Reports, 2017, 7, 46416.	3.3	37
21	The special considerations of gene therapy for mitochondrial diseases. Npj Genomic Medicine, 2020, 5, 7.	3.8	35
22	Next Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy. Current Protocols in Human Genetics, 2011, 71, Unit19.8.	3.5	34
23	A deafness-associated tRNA ^{Asp} mutation alters the m ¹ G37 modification, aminoacylation and stability of tRNA ^{Asp} and mitochondrial function. Nucleic Acids Research, 2016, 44, 10974-10985.	14.5	34
24	Biochemical evidence for a mitochondrial genetic modifier in the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Human Molecular Genetics, 2016, 25, 3613-3625.	2.9	32
25	Biallelic mutations in the ferredoxin reductase gene cause novel mitochondriopathy with optic atrophy. Human Molecular Genetics, 2017, 26, 4937-4950.	2.9	32
26	Neonatal multiorgan failure due to ACAD9 mutation and complex I deficiency with mitochondrial hyperplasia in liver, cardiac myocytes, skeletal muscle, and renal tubules. Human Pathology, 2016, 49, 27-32.	2.0	26
27	Contribution of mitochondrial ND1 3394T>C mutation to the phenotypic manifestation of Leber's hereditary optic neuropathy. Human Molecular Genetics, 2019, 28, 1515-1529.	2.9	26
28	The role of mitochondrial-related nuclear genes in age-related common disease. Mitochondrion, 2020, 53, 38-47.	3.4	25
29	PINK1-mediated Drp1S616 phosphorylation modulates synaptic development and plasticity via promoting mitochondrial fission. Signal Transduction and Targeted Therapy, 2022, 7, 103.	17.1	25
30	Biallelic mutations in FDXR cause neurodegeneration associated with inflammation. Journal of Human Genetics, 2018, 63, 1211-1222.	2.3	23
31	Inside the 8p23.1 duplication syndrome; eight microduplications of likely or uncertain clinical significance. American Journal of Medical Genetics, Part A, 2015, 167, 2052-2064.	1.2	21
32	Integrated analysis of the molecular pathogenesis of FDXR-associated disease. Cell Death and Disease, 2020, 11, 423.	6.3	21
33	Superâ€resolution analyzing spatial organization of lysosomes with an organic fluorescent probe. Exploration, 2022, 2, .	11.0	20
34	Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46â^'/â^' mice. Human Molecular Genetics, 2020, 29, 649-661.	2.9	19
35	Reply to Lutz-Bonengel et al.: Biparental mtDNA transmission is unlikely to be the result of nuclear mitochondrial DNA segments. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1823-1824.	7.1	15
36	Perspective: Is Random Monoallelic Expression a Contributor to Phenotypic Variability of Autosomal Dominant Disorders?. Frontiers in Genetics, 2017, 8, 191.	2.3	14

#	Article	IF	Citations
37	Mitochondria and Their Role in Human Reproduction. DNA and Cell Biology, 2020, 39, 1370-1378.	1.9	14
38	Novel Mutations in EPCAM Cause Congenital Tufting Enteropathy. Journal of Clinical Gastroenterology, 2018, 52, e1-e6.	2.2	12
39	Nanoscopic quantification of sub-mitochondrial morphology, mitophagy and mitochondrial dynamics in living cells derived from patients with mitochondrial diseases. Journal of Nanobiotechnology, 2021, 19, 136.	9.1	12
40	Deep Sequencing Reveals Novel Genetic Variants in Children with Acute Liver Failure and Tissue Evidence of Impaired Energy Metabolism. PLoS ONE, 2016, 11, e0156738.	2. 5	11
41	Presynaptic and postsynaptic mechanisms underlying auditory neuropathy in patients with mutations in the <i>OTOF</i> OPA1gene. Audiological Medicine, 2011, 9, 59-66.	0.4	10
42	A Novel Variant of <scp><i>ATP5MC3</i></scp> Associated with Both Dystonia and Spastic Paraplegia. Movement Disorders, 2022, 37, 375-383.	3.9	10
43	Phenotypic and functional characterization of Bst+/- mouse retina. DMM Disease Models and Mechanisms, 2015, 8, 969-76.	2.4	8
44	Clinical utility of whole genome sequencing for the detection of mitochondrial genome mutations. Journal of Genetics and Genomics, 2020, 47, 167-169.	3.9	8
45	The current landscape for the treatment of mitochondrial disorders. Journal of Genetics and Genomics, 2018, 45, 71-77.	3.9	7
46	Validation of the diagnostic potential of mtDNA copy number derived from whole genome sequencing. Journal of Genetics and Genomics, 2018, 45, 333-335.	3.9	7
47	A rapid bioanalytical tool for detection of sequence-specific circular DNA and mitochondrial DNA point mutations. Analytical and Bioanalytical Chemistry, 2019, 411, 1935-1941.	3.7	5
48	Mitochondrial genome variant m.3250T>C as a possible risk factor for mitochondrial cardiomyopathy. Human Mutation, 2021, 42, 177-188.	2.5	5
49	Validation of lowâ€coverage wholeâ€genome sequencing for mitochondrial DNA variants suggests mitochondrial DNA as a genetic cause of preterm birth. Human Mutation, 2021, 42, 1602-1614.	2.5	5
50	Systemic Delivery of AAV-Fdxr Mitigates the Phenotypes of Mitochondrial Disorders in Fdxr Mutant Mice. Molecular Therapy - Methods and Clinical Development, 2020, 18, 84-97.	4.1	4
51	Response: First birth following spindle transfer - should we stay or should we go?. Reproductive BioMedicine Online, 2017, 35, 546-547.	2.4	3
52	65 YEARS OF THE DOUBLE HELIX: The advancements of gene editing and potential application to hereditary cancer. Endocrine-Related Cancer, 2018, 25, T141-T158.	3.1	3
53	Reply to Annis et al.: Is quasi-Mendelian mtDNA competition enough to drive transmission of paternal mtDNA?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14799-14800.	7.1	3
54	Creating Cell Model 2.0 Using Patient Samples Carrying a Pathogenic Mitochondrial DNA Mutation: iPSC Approach for LHON. Methods in Molecular Biology, 2021, , .	0.9	3

TAOSHENG HUANG

#	Article	IF	CITATIONS
55	Mitochondrial replacement therapy: Genetic counselors' experiences, knowledge, and opinions. Journal of Genetic Counseling, 2021, 30, 828-837.	1.6	2
56	Nextâ€Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy. Current Protocols, 2022, 2, e412.	2.9	2