Maarten Hulsmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7664569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis. Nature Immunology, 2022, 23, 605-618.	7.0	33
2	Cerebrospinal fluid can exit into the skull bone marrow and instruct cranial hematopoiesis in mice with bacterial meningitis. Nature Neuroscience, 2022, 25, 567-576.	7.1	72
3	Neutrophils incite and macrophages avert electrical storm after myocardial infarction. , 2022, 1, 649-664.		33
4	Acute mental stress drives vascular inflammation and promotes plaque destabilization in mouse atherosclerosis. European Heart Journal, 2021, 42, 4077-4088.	1.0	58
5	Nanoparticle-encapsulated siRNAs for gene silencing in the haematopoietic stem-cell niche. Nature Biomedical Engineering, 2020, 4, 1076-1089.	11.6	80
6	Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation, 2020, 142, 2443-2455.	1.6	121
7	Diminished Reactive Hematopoiesis and Cardiac Inflammation in a Mouse Model of Recurrent Myocardial Infarction. Journal of the American College of Cardiology, 2020, 75, 901-915.	1.2	28
8	Fluorescence microscopy tensor imaging representations for large-scale dataset analysis. Scientific Reports, 2020, 10, 5632.	1.6	7
9	Proliferative, degradative smooth muscle cells promote aortic disease. Journal of Clinical Investigation, 2020, 130, 1096-1098.	3.9	7
10	Tissue-Specific Macrophage Responses to Remote Injury Impact the Outcome of Subsequent Local Immune Challenge. Immunity, 2019, 51, 899-914.e7.	6.6	110
11	Smad3 Cranks Up the Appetite of Infarct Macrophages. Circulation Research, 2019, 125, 71-73.	2.0	1
12	Glucocorticoids Regulate Bone Marrow B Lymphopoiesis After Stroke. Circulation Research, 2019, 124, 1372-1385.	2.0	50
13	A Supramolecular Nanocarrier for Delivery of Amiodarone Anti-Arrhythmic Therapy to the Heart. Bioconjugate Chemistry, 2019, 30, 733-740.	1.8	24
14	Cardiac macrophages promote diastolic dysfunction. Journal of Experimental Medicine, 2018, 215, 423-440.	4.2	314
15	A Miniaturized, Programmable Pacemaker for Long-Term Studies in the Mouse. Circulation Research, 2018, 123, 1208-1219.	2.0	18
16	The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine, 2018, 24, 1234-1245.	15.2	439
17	Macrophages Facilitate Electrical Conduction in the Heart. Cell, 2017, 169, 510-522.e20.	13.5	703
18	Low Cytochrome Oxidase 1 Links Mitochondrial Dysfunction to Atherosclerosis in Mice and Pigs. PLoS ONE, 2017, 12, e0170307.	1.1	10

MAARTEN HULSMANS

#	Article	IF	CITATIONS
19	Proliferation and Recruitment Contribute to Myocardial Macrophage Expansion in Chronic Heart Failure. Circulation Research, 2016, 119, 853-864.	2.0	318
20	RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Science Translational Medicine, 2016, 8, 342ra80.	5.8	169
21	Heart Failure With Preserved Ejection Fraction Induces Beiging in Adipose Tissue. Circulation: Heart Failure, 2016, 9, e002724.	1.6	49
22	Monocyte and macrophage contributions to cardiac remodeling. Journal of Molecular and Cellular Cardiology, 2016, 93, 149-155.	0.9	210
23	Low cytochrome oxidase 411 links mitochondrial dysfunction to obesity and type 2 diabetes in humans and mice. International Journal of Obesity, 2015, 39, 1254-1263.	1.6	24
24	Myocardial Infarction Activates CCR2+ Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2015, 16, 477-487.	5.2	168
25	Targeting Interleukin-1Î ² Reduces Leukocyte Production After Acute Myocardial Infarction. Circulation, 2015, 132, 1880-1890.	1.6	200
26	Biomechanical factors and macrophages in plaque stability. Cardiovascular Research, 2013, 99, 284-293.	1.8	65
27	MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovascular Research, 2013, 100, 7-18.	1.8	277
28	PPAR Agonist-Induced Reduction of Mcp1 in Atherosclerotic Plaques of Obese, Insulin-Resistant Mice Depends on Adiponectin-Induced Irak3 Expression. PLoS ONE, 2013, 8, e62253.	1.1	30
29	MicroRNAs as Early Biomarkers in Obesity and Related Metabolic and Cardiovascular Diseases. Current Pharmaceutical Design, 2013, 19, 5704-5717.	0.9	41
30	Decreased miR-181a Expression in Monocytes of Obese Patients Is Associated with the Occurrence of Metabolic Syndrome and Coronary Artery Disease. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1213-E1218.	1.8	106
31	Interleukin-1 Receptor-Associated Kinase-3 Is a Key Inhibitor of Inflammation in Obesity and Metabolic Syndrome. PLoS ONE, 2012, 7, e30414.	1.1	70
32	Mitochondrial Reactive Oxygen Species and Risk of Atherosclerosis. Current Atherosclerosis Reports, 2012, 14, 264-276.	2.0	115
33	Decrease of miR-146b-5p in Monocytes during Obesity Is Associated with Loss of the Anti-Inflammatory but Not Insulin Signaling Action of Adiponectin. PLoS ONE, 2012, 7, e32794.	1.1	76
34	MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB Journal, 2011, 25, 2515-2527.	0.2	214
35	The vicious circle between oxidative stress and inflammation in atherosclerosis. Journal of Cellular and Molecular Medicine, 2010, 14, 70-78.	1.6	211
36	Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. International Journal of Obesity, 2010, 34, 569-577.	1.6	64