Guido Proietti

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/7664505/publications.pdf
Version: 2024-02-01

1 Finding the most vital node of a shortest path. Theoretical Computer Science, 2003, 296, 167-177.

A faster computation of the most vital edge of a shortest path. Information Processing Letters, 2001, 79, 81-85.
Finding the detour-critical edge of a shortest path between two nodes. Information Processing 0.4 31
$5 \quad \begin{aligned} & \text { Finding the detour-critica } \\ & \text { Letters, 1998, 67, 51-54. }\end{aligned}$
0.5
On the complexity of minimizing interference in ad-hoc and sensor networks. Theoretical Computer $6 \quad \begin{aligned} & \text { On the complexity of minim } \\ & \text { Science, 2008, 402, 43-55. }\end{aligned}$ 31 0.5 23
$7 \quad \begin{aligned} & \text { Swapping a failing edge of a shortest } \\ & 7 \\ & \text { Computer Science, 2007, 383, 23-33. }\end{aligned}$22
8 Reusing Optimal TSP Solutions for Locally Modified Input Instances. , 2006, , 251-270.
0.5 20
$9 \quad$ An optimal algorithm
Hardness, approximability, and fixed-parameter tractability of the clustered shortest-path treeproblem. Journal of Combinatorial Optimization, 2019, 38, 165-184.
0.8 20
11 Finding All the Best Swaps of a Minimum Diameter Spanning Tree Under Transient Edge Failures.
Journal of Graph Algorithms and Applications, 2001, 5, 39-57.0.420
2.4 17Time and space efficient secondary memory representation of quadtrees. Information Systems, 1997, 22,
25-37.1.015Nearly Linear Time Minimum Spanning Tree Maintenance for Transient Node Failures. Algorithmica,2004, 40, 119-132.Polynomial Time Algorithms for 2-Edge-Connectivity Augmentation Problems. Algorithmica, 2003, 36,1.0361-374.Efficient secondary memory processing of window queries on spatial data. Information Sciences, 1995,84, 67-83.Network verification via routing table queries. Journal of Computer and System Sciences, 2015, 81,234-248.
Dynamic Maintenance Versus Swapping: An Experimental Study on Shortest Paths Trees. Lecture Notes

in Computer Science, 2001, , 207-217. \begin{tabular}{l}
How to Swap a Failing Edge of a Single Source Shortest Paths Tree. Lecture Notes in Computer

$24 \quad 10$

Science, 1999, , 144-153.

10

$25 \quad$| Accurate modeling of region data. IEEE Transactions on Knowledge and Data Engineering, 2001, 13, |
| :--- |
| $874-883$. |

\end{tabular}

26 Locality-based network creation games. , 2014, , .Specializations and generalizations of the Stackelberg minimum spanning tree game. Theoretical
Computer Science, 2015, 562, 643-657.

$0.5 \quad 9$1.09
31 Chapter 6: Access Methods and Query Processing Techniques. Lecture Notes in Computer Science, 2003, , 203-261.

The max-distance network creation game on general host graphs. Theoretical Computer Science, 2015,
Bounded-Distance Network Creation Games. ACM Transactions on Economics and Computation, 2015, 3, 1-20.

Efficient Truthful Mechanisms for the Single-Source Shortest Paths Tree Problem. Lecture Notes in
Computer Science, 2005, , 941-951.

Edge-Connectivity Augmentation and Network Matrices. Lecture Notes in Computer Science, 2004, ,
$355-364$.

The Max-Distance Network Creation Game on General Host Graphs. Lecture Notes in Computer Science, 2012, , 392-405.

41	A Faster Computation of All the Best Swap Edges of a Shortest Paths Tree. Algorithmica, 2015, 73, 547-570.	1.0	6
42	Polynomial Time Algorithms for Edge-Connectivity Augmentation of Hamiltonian Paths. Lecture Notes in Computer Science, 2001, , 345-354.	1.0	6
43	Maintaining a Minimum Spanning Tree under Transient Node Failures. Lecture Notes in Computer Science, 2000, 346-355.	1.0	6
44	A generalized comparison of linear representations of thematic layers. Data and Knowledge Engineering, 2001, 37, 1-23.	2.1	5
45	On the hardness of constructing minimal 2-connected spanning subgraphs in complete graphs with sharpened triangle inequality. Theoretical Computer Science, 2004, 326, 137-153.	0.5	5
46	Exact and Approximate Truthful Mechanisms for the Shortest Paths Tree Problem. Algorithmica, 2007, 49, 171-191.	1.0	5
47	Tracking routes in communication networks. Theoretical Computer Science, 2020, 844, 1-15.	0.5	5
48	On the creation of quadtrees by using a branching process. Image and Vision Computing, 1996, 14, 159-164.	2.7	4
49	Partitioning the Nodes of a Graph to Minimize the Sum of Subgraph Radii. Lecture Notes in Computer Science, 2006, , 578-587.	1.0	4

50 A Faster Computation of All the Best Swap Edges of a Tree Spanner. Lecture Notes in Computer Science,

$$
\begin{aligned}
& 51 \text { Swapping a Failing Edge of a Shortest Paths Tree by Minimizing the Average Stretch Factor. Lecture } \\
& \text { Notes in Computer Science, 2004, ,99-110. }
\end{aligned}
$$

55 Fault-Tolerant Approximate Shortest-Path Trees. Algorithmica, 2018, 80, 3437-3460.
1.0

3

56 On the Complexity of Minimizing Interference in Ad-Hoc and Sensor Networks. Lecture Notes in Computer Science, 2006, , 13-24.
$57 \quad$ Network Verification via Routing Table Queries. Lecture Notes in Computer Science, 2011, , 270-281.
1.0

A Faster Approximation Algorithm for 2-Edge-Connectivity Augmentation. Lecture Notes in Computer
$58 \quad$ A Faster Approximation Al
1.03

Finding All the Best Swaps of a Minimum Diameter Spanning Tree Under Transient Edge Failures.
Lecture Notes in Computer Science, 1998, 55-66.
$60 \quad \begin{aligned} & \text { Probabilistic models for images and quadtrees: differences and equivalences. Image and Vision } \\ & \text { Computing, 1999, 17, 659-665. }\end{aligned}$

Efficient management of transient station failures in linear radio communication networks with
bases. Journal of Parallel and Distributed Computing, 2006, 66, 556-565.

Exact and approximate algorithms for movement problems on (special classes of) graphs. Theoretical
Computer Science, 2016, 652, 86-101.

Strongly Polynomial-Time Truthful Mechanisms in One Shot. Lecture Notes in Computer Science, 2006,
, 377-388.
1.0

Size Estimation of the Intersection Join between Two Line Segment Datasets. Lecture Notes in
Computer Science, 2000, , 229-238.

Path-Fault-Tolerant Approximate Shortest-Path Trees. Lecture Notes in Computer Science, 2015, ,
$65 \quad \begin{aligned} & \text { Path-Fault } \\ & \text { 224-238. }\end{aligned}$
$1.0 \quad 2$

Effective Edge-Fault-Tolerant Single-Source Spanners via Best (or Good) Swap Edges. Lecture Notes in Computer Science, 2017, , 303-317.
1.0

2

Specializations and Generalizations of the Stackelberg Minimum Spanning Tree Game. Lecture Notes in Computer Science, 2010, , 75-86.

On the Existence of Truthful Mechanisms for the Minimum-Cost Approximate Shortest-Paths Tree Problem. Lecture Notes in Computer Science, 2006, , 295-309.
1.0

Finding Best Swap Edges Minimizing the Routing Cost of a Spanning Tree. Lecture Notes in Computer Science, 2010, , 138-149.
1.0

Tracking Routes in Communication Networks. Lecture Notes in Computer Science, 2019, , 81-93.
1.0

2

71 Multiple-Edge-Fault-Tolerant Approximate Shortest-Path Trees. Algorithmica, 2022, 84, 37-59.
1.0

2

74 Intersection reporting on two collections of disjoint sets. Information Sciences, 1999, 114, 41-52.

An Improved Algorithm for Computing All the Best Swap Edges of a Tree Spanner. Algorithmica, 2020, 82, 279-299.
Locating Facilities on a Net
Science, 2007, , 587-598.

Exact and Approximate Algorithms for Movement Problems on (Special Classes of) Graphs. Lecture

