
C Stewart Gillmor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7664349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Positional Cloning in Arabidopsis. Why It Feels Good to Have a Genome Initiative Working for You1. Plant Physiology, 2000, 123, 795-806.	4.8	452
2	EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell, 1994, 77, 1051-1062.	28.9	324
3	VACUOLELESS1 Is an Essential Gene Required for Vacuole Formation and Morphogenesis in Arabidopsis. Developmental Cell, 2001, 1, 303-310.	7.0	179
4	α-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. Journal of Cell Biology, 2002, 156, 1003-1013.	5.2	174
5	Embryonic Patterning inArabidopsis thaliana. Annual Review of Cell and Developmental Biology, 2007, 23, 207-236.	9.4	163
6	Glycosylphosphatidylinositol-Anchored Proteins Are Required for Cell Wall Synthesis and Morphogenesis in Arabidopsis. Plant Cell, 2005, 17, 1128-1140.	6.6	132
7	CHLOROPLAST BIOGENESIS Genes Act Cell and Noncell Autonomously in Early Chloroplast Development. Plant Physiology, 2004, 135, 471-482.	4.8	110
8	The MED12-MED13 module of Mediator regulates the timing of embryo patterning in <i>Arabidopsis</i> . Development (Cambridge), 2010, 137, 113-122.	2.5	107
9	The Maternal to Zygotic Transition in Animals and Plants. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 89-100.	1.1	104
10	Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature, 2014, 514, 624-627.	27.8	88
11	Mutations in two non anonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. Plant Journal, 2012, 72, 1000-1014.	5.7	79
12	Auxin Response Factors promote organogenesis by chromatin-mediated repression of the pluripotency gene SHOOTMERISTEMLESS. Nature Communications, 2019, 10, 886.	12.8	72
13	The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. Plant Cell, 2019, 31, 2888-2911.	6.6	57
14	The <i>Arabidopsis</i> Mediator CDK8 module genes <i>CCT</i> (<i>MED12</i>) and <i>GCT</i> (<i>MED13</i>) are global regulators of developmental phase transitions. Development (Cambridge), 2014, 141, 4580-4589.	2.5	50
15	Mediator: A key regulator of plant development. Developmental Biology, 2016, 419, 7-18.	2.0	47
16	Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Developmental Biology, 2017, 431, 145-151.	2.0	47
17	The Times They Are A-Changin': Heterochrony in Plant Development and Evolution. Frontiers in Plant Science, 2018, 9, 1349.	3.6	31
18	Multiple Sampling in Single-Cell Enzyme Assays Using CE-Laser-Induced Fluorescence to Monitor Reaction Progress. Analytical Chemistry, 2005, 77, 3132-3137.	6.5	30

C STEWART GILLMOR

#	Article	IF	CITATIONS
19	Zygotic genome activation and imprinting: parent-of-origin gene regulation in plant embryogenesis. Current Opinion in Plant Biology, 2015, 27, 29-35.	7.1	28
20	Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Current Topics in Developmental Biology, 2019, 131, 497-543.	2.2	26
21	A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis. PLoS ONE, 2016, 11, e0146492.	2.5	24
22	Developmental and genomic architecture of plant embryogenesis: from model plant to crops. Plant Communications, 2021, 2, 100136.	7.7	24
23	Alternative splicing dynamics and evolutionary divergence during embryogenesis in wheat species. Plant Biotechnology Journal, 2021, 19, 1624-1643.	8.3	23
24	Convergent repression of miR156 by sugar and the CDK8 module of Arabidopsis Mediator. Developmental Biology, 2017, 423, 19-23.	2.0	21
25	Zygotic genome activation in isogenic and hybrid plant embryos. Current Opinion in Plant Biology, 2016, 29, 148-153.	7.1	17
26	Low nitrogen availability inhibits the phosphorus starvation response in maize (Zea mays ssp. mays L.). BMC Plant Biology, 2021, 21, 259.	3.6	16
27	Evolutionary divergence in embryo and seed coat development of U's Triangle <i>Brassica</i> species illustrated by a spatiotemporal transcriptome atlas. New Phytologist, 2022, 233, 30-51.	7.3	16
28	Gene expression atlas of embryo development in Arabidopsis. Plant Reproduction, 2019, 32, 93-104.	2.2	15
29	Annotating and quantifying pri-miRNA transcripts using RNA-Seq data of wild type and serrate-1 globular stage embryos of Arabidopsis thaliana. Data in Brief, 2017, 15, 642-647.	1.0	12
30	EMS Mutagenesis of Arabidopsis Seeds. Methods in Molecular Biology, 2020, 2122, 15-23.	0.9	5
31	An Introduction to Methods for Discovery and Functional Analysis of MicroRNAs in Plants. Methods in Molecular Biology, 2019, 1932, 1-14.	0.9	4
32	Identification of the maize Mediator CDK8 module and transposon-mediated mutagenesis of <i>ZmMed12a</i> . International Journal of Developmental Biology, 2021, 65, 383-394.	0.6	2
33	Analysis of Global Gene Expression in Maize (Zea mays) Vegetative and Reproductive Tissues That Differ in Accumulation of Starch and Sucrose. Plants, 2022, 11, 238.	3.5	2
34	Genetic Screens to Target Embryo and Endosperm Pathways in Arabidopsis and Maize. Methods in Molecular Biology, 2020, 2122, 3-14.	0.9	1
35	The <i>pho1;2a′â€m1.1</i> allele of <i>Phosphate1</i> conditions misregulation of the phosphorus starvation response in maize (<scp> <i>Zea mays</i> ssp. <i>mays</i> </scp> L.). Plant Direct, 2022, 6, .	1.9	0