
Fengbin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7664063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic structure of Lanreotide nanotubes revealed by cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
2	Cryo-EM of Helical Polymers. Chemical Reviews, 2022, 122, 14055-14065.	47.7	33
3	Flagellin outer domain dimerization modulates motility in pathogenic and soil bacteria from viscous environments. Nature Communications, 2022, 13, 1422.	12.8	10
4	TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nature Communications, 2022, 13, 2165.	12.8	43
5	Spindle-shaped archaeal viruses evolved from rod-shaped ancestors to package a larger genome. Cell, 2022, 185, 1297-1307.e11.	28.9	24
6	Archaeal bundling pili of <i>Pyrobaculum calidifontis</i> reveal similarities between archaeal and bacterial biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
7	Mating pair stabilization mediates bacterial conjugation species specificity. Nature Microbiology, 2022, 7, 1016-1027.	13.3	43
8	DeepTracer-ID: De novo protein identification from cryo-EM maps. Biophysical Journal, 2022, 121, 2840-2848.	0.5	20
9	Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nature Microbiology, 2022, 7, 1291-1300.	13.3	47
10	Enzyme Responsive Rigid-Rod Aromatics Target "Undruggable―Phosphatases to Kill Cancer Cells in a Mimetic Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 13055-13059.	13.7	28
11	Cryo-EM is a powerful tool, but helical applications can have pitfalls. Soft Matter, 2021, 17, 3291-3293.	2.7	8
12	Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nature Communications, 2021, 12, 407.	12.8	35
13	<i>Adnaviria</i> : a New Realm for Archaeal Filamentous Viruses with Linear A-Form Double-Stranded DNA Genomes. Journal of Virology, 2021, 95, e0067321.	3.4	22
14	Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter, 2021, 4, 3217-3231.	10.0	36
15	Structure of a filamentous virus uncovers familial ties within the archaeal virosphere. Virus Evolution, 2020, 6, veaa023.	4.9	13
16	The structures of two archaeal type IV pili illuminate evolutionary relationships. Nature Communications, 2020, 11, 3424.	12.8	24
17	Structures of filamentous viruses infecting hyperthermophilic archaea explain DNA stabilization in extreme environments. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19643-19652.	7.1	29
18	Structure and assembly of archaeal viruses. Advances in Virus Research, 2020, 108, 127-164.	2.1	35

Fengbin Wang

#	Article	IF	CITATIONS
19	Artificial Intracellular Filaments. Cell Reports Physical Science, 2020, 1, 100085.	5.6	56
20	Atomic structure of the <i>Campylobacter jejuni</i> flagellar filament reveals how ε Proteobacteria escaped Toll-like receptor 5 surveillance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16985-16991.	7.1	30
21	Structural Determination of a Filamentous Chaperone to Fabricate Electronically Conductive Metalloprotein Nanowires. ACS Nano, 2020, 14, 6559-6569.	14.6	20
22	The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage. Proceedings of the United States of America, 2020, 117, 10254-10264.	7.1	25
23	Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs. Proceedings of the United States of America, 2019, 116, 14456-14464.	7.1	32
24	A packing for A-form DNA in an icosahedral virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22591-22597.	7.1	23
25	An extensively glycosylated archaeal pilus survives extreme conditions. Nature Microbiology, 2019, 4, 1401-1410.	13.3	46
26	Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers. Cell, 2019, 177, 361-369.e10.	28.9	391
27	Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. ELife, 2018, 7, .	6.0	70
28	Structural conservation in a membrane-enveloped filamentous virus infecting a hyperthermophilic acidophile. Nature Communications, 2018, 9, 3360.	12.8	24
29	A structural model of flagellar filament switching across multiple bacterial species. Nature Communications, 2017, 8, 960.	12.8	90
30	Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution. Structure, 2017, 25, 1423-1435.e4.	3.3	87
31	Refined Cryo-EM Structure of the T4 Tail Tube: Exploring the Lowest Dose Limit. Structure, 2017, 25, 1436-1441.e2.	3.3	40
32	Structural basis for high-affinity actin binding revealed by a β-III-spectrin SCA5 missense mutation. Nature Communications, 2017, 8, 1350.	12.8	53
33	Functional AdoMet Isosteres Resistant to Classical AdoMet Degradation Pathways. ACS Chemical Biology, 2016, 11, 2484-2491.	3.4	36
34	Reader domain specificity and lysine demethylase-4 family function. Nature Communications, 2016, 7, 13387.	12.8	45
35	Structural dynamics of a methionine $\hat{1}^3$ -lyase for calicheamicin biosynthesis: Rotation of the conserved tyrosine stacking with pyridoxal phosphate. Structural Dynamics, 2016, 3, 034702.	2.3	4
36	Structural characterization of AtmS13, a putative sugar aminotransferase involved in indolocarbazole AT2433 aminopentose biosynthesis. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1547-1554.	2.6	10

Fengbin Wang

#	Article	IF	CITATIONS
37	Structural Basis for the Stereochemical Control of Amine Installation in Nucleotide Sugar Aminotransferases. ACS Chemical Biology, 2015, 10, 2048-2056.	3.4	12
38	Structure of a cupin protein Plu4264 from Photorhabdus luminescens subsp. laumondii TTO1 at 1.35 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2015, 83, 383-388.	2.6	2
39	Understanding molecular recognition of promiscuity of thermophilic methionine adenosyltransferase s <scp>MAT</scp> from <i>SulfolobusÂsolfataricus</i> . FEBS Journal, 2014, 281, 4224-4239.	4.7	36
40	Structure-Guided Functional Characterization of Enediyne Self-Sacrifice Resistance Proteins, CalU16 and CalU19. ACS Chemical Biology, 2014, 9, 2347-2358.	3.4	24
41	Crystal Structure of Thermostable p-nitrophenylphosphatase from Bacillus Stearothermophilus (Bs-TpNPPase). Protein and Peptide Letters, 2014, 21, 483-489.	0.9	5
42	Crystal structure of SsfS6, the putative <i>C</i> â€glycosyltransferase involved in SF2575 biosynthesis. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1277-1282.	2.6	24
43	Crystal Structure of the Tum1 Protein from the Yeast Saccharomyces cerevisiae. Protein and Peptide Letters, 2012, 19, 1139-1143.	0.9	3
44	The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier. Protein and Cell, 2011, 2, 612-619.	11.0	25
45	Crystallization and preliminary X-ray analysis of the yeast tRNA-thiouridine modification protein 1 (Tum1p). Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 953-955.	0.7	2
46	Association of novel <i>TMEM67</i> variants with mild phenotypes of high gammaâ€glutamyl transpeptidase cholestasis and congenital hepatic fibrosis. Journal of Cellular Physiology, 0, , .	4.1	0