
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7664039/publications.pdf Version: 2024-02-01

ADDIAN D HECEMAN

#	Article	IF	CITATIONS
1	Metabolite identification via the Madison Metabolomics Consortium Database. Nature Biotechnology, 2008, 26, 162-164.	9.4	591
2	The Radical SAM Superfamily. Critical Reviews in Biochemistry and Molecular Biology, 2008, 43, 63-88.	2.3	487
3	Enzymatic Reaction Mechanisms. , 2007, , .		184
4	Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4453-4458.	3.3	147
5	Free Radical Mechanisms in Enzymology. Chemical Reviews, 2006, 106, 3302-3316.	23.0	130
6	Structural Analysis of UDP-Sugar Binding to UDP-Galactose 4-Epimerase fromEscherichia coliâ€,‡. Biochemistry, 1997, 36, 6294-6304.	1.2	115
7	Implications of15N-metabolic labeling for automated peptide identification inArabidopsis thaliana. Proteomics, 2007, 7, 1279-1292.	1.3	103
8	Autophosphorylation and Subcellular Localization Dynamics of a Salt- and Water Deficit-Induced Calcium-Dependent Protein Kinase from Ice Plant. Plant Physiology, 2004, 135, 1430-1446.	2.3	97
9	Toward a Structural Understanding of the Dehydratase Mechanism. Structure, 2002, 10, 81-92.	1.6	94
10	Comparison of Full Versus Partial Metabolic Labeling for Quantitative Proteomics Analysis in Arabidopsis thaliana. Molecular and Cellular Proteomics, 2007, 6, 860-881.	2.5	93
11	Plant metabolomicsmeeting the analytical challenges of comprehensive metabolite analysis. Briefings in Functional Genomics, 2010, 9, 139-148.	1.3	92
12	A Quantitative Analysis of Arabidopsis Plasma Membrane Using Trypsin-catalyzed 180 Labeling. Molecular and Cellular Proteomics, 2006, 5, 1382-1395.	2.5	90
13	Stable Isotope Assisted Assignment of Elemental Compositions for Metabolomics. Analytical Chemistry, 2007, 79, 6912-6921.	3.2	90
14	Seasonal pasture myopathy/atypical myopathy in <scp>N</scp> orth <scp>A</scp> merica associated with ingestion of hypoglycin <scp>A</scp> within seeds of the box elder tree. Equine Veterinary Journal, 2013, 45, 419-426.	0.9	89
15	A Transcriptome-Based Characterization of Habituation in Plant Tissue Culture. Plant Physiology, 2006, 140, 1255-1278.	2.3	87
16	Expression of mal is associated with urothelial differentiation in vitro: identification by differential display reverse-transcriptase polymerase chain reaction. Differentiation, 1997, 61, 177-185.	1.0	86
17	Genetic and environmental interactions determine plant defences against herbivores. Journal of Ecology, 2011, 99, 313-326.	1.9	79
18	A phyloproteomic characterization ofin vitro autophosphorylation in calcium-dependent protein kinases. Proteomics, 2006, 6, 3649-3664.	1.3	75

#	Article	IF	CITATIONS
19	Combinations of Abiotic Factors Differentially Alter Production of Plant Secondary Metabolites in Five Woody Plant Species in the Boreal-Temperate Transition Zone. Frontiers in Plant Science, 2018, 9, 1257.	1.7	74
20	Protocol: High-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods, 2012, 8, 31.	1.9	70
21	Cyanogenesis of Wild Lima Bean (Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature. PLoS ONE, 2009, 4, e5450.	1.1	69
22	Metabolomics Reveals the Origins of Antimicrobial Plant Resins Collected by Honey Bees. PLoS ONE, 2013, 8, e77512.	1.1	69
23	Prediction of Error Associated with False-Positive Rate Determination for Peptide Identification in Large-Scale Proteomics Experiments Using a Combined Reverse and Forward Peptide Sequence Database Strategy. Journal of Proteome Research, 2007, 6, 392-398.	1.8	67
24	Neoglycopolymers produced by aqueous ring-opening metathesis polymerization: decreasing saccharide density increases activity. Journal of Molecular Catalysis A, 1997, 116, 209-216.	4.8	65
25	Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Current Opinion in Biotechnology, 2017, 43, 41-48.	3.3	62
26	An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. Journal of the American Society for Mass Spectrometry, 2004, 15, 647-653.	1.2	60
27	Identification of genes expressed after noise exposure in the chick basilar papilla. Hearing Research, 1996, 96, 20-32.	0.9	57
28	A study on retention "projection―as a supplementary means for compound identification by liquid chromatography–mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. Journal of Chromatography A, 2011, 1218, 6732-6741.	1.8	53
29	Hypoglycin A Concentrations in Seeds of <i>Acer Pseudoplatanus</i> Trees Growing on Atypical Myopathyâ€Affected and Control Pastures. Journal of Veterinary Internal Medicine, 2014, 28, 1289-1293.	0.6	53
30	Characterization of Enzymatic Processes by Rapid Mixâ^'Quench Mass Spectrometry:Â The Case of dTDP-glucose 4,6-Dehydrataseâ€. Biochemistry, 2000, 39, 13633-13640.	1.2	52
31	The Structure of NADH in the Enzyme dTDP-d-glucose Dehydratase (RmlB). Journal of the American Chemical Society, 2003, 125, 11872-11878.	6.6	51
32	Microscale analysis of amino acids using gas chromatography–mass spectrometry after methyl chloroformate derivatization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2199-2208.	1.2	50
33	In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling. Fungal Genetics and Biology, 2011, 48, 874-885.	0.9	50
34	Retention projection enables accurate calculation of liquid chromatographic retention times across labs and methods. Journal of Chromatography A, 2015, 1412, 43-51.	1.8	47
35	Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. Plant Journal, 2010, 63, 680-695.	2.8	44
36	Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles. Journal of Chromatography A, 2011, 1218, 6742-6749.	1.8	44

#	Article	IF	CITATIONS
37	Evaluation of instrumental methods for the untargeted analysis of chemical stimuli of orange juice flavour. Flavour and Fragrance Journal, 2011, 26, 429-440.	1.2	43
38	Evaluating solvent extraction systems using metabolomics approaches. RSC Advances, 2014, 4, 26325-26334.	1.7	43
39	NEW BIOINFORMATICS RESOURCES FOR METABOLOMICS. , 2006, , .		43
40	Probing Catalysis byEscherichia colidTDP-Glucose-4,6-dehydratase:Â Identification and Preliminary Characterization of Functional Amino Acid Residues at the Active Siteâ€. Biochemistry, 2001, 40, 6598-6610.	1.2	40
41	An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research. Proteome Science, 2011, 9, 9.	0.7	37
42	Proteome Scale-Protein Turnover Analysis Using High Resolution Mass Spectrometric Data from Stable-Isotope Labeled Plants. Journal of Proteome Research, 2016, 15, 851-867.	1.8	33
43	Van Krevelen diagram visualization of high resolution-mass spectrometry metabolomics data with OpenVanKrevelen. Metabolomics, 2018, 14, 48.	1.4	31
44	An extremely mild 3-aza-claisen reaction. 2. New conditions and the rearrangement of α-heteroatom substituted amides. Tetrahedron Letters, 1993, 34, 1453-1456.	0.7	30
45	Concerted and Stepwise Dehydration Mechanisms Observed in Wild-Type and MutatedEscherichia colidTDP-Glucose 4,6-Dehydrataseâ€. Biochemistry, 2002, 41, 2797-2804.	1.2	30
46	Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17235-17240.	3.3	30
47	Chemical and Stereochemical Actions of UDP–Galactose 4-Epimerase. Accounts of Chemical Research, 2013, 46, 1417-1426.	7.6	30
48	Measuring the Chemical and Cytotoxic Variability of Commercially Available Kava (Piper methysticum) Tj ETQq0	0 0 rgBT /	Overlock 10 T
49	Dehydration Is Catalyzed by Glutamate-136 and Aspartic Acid-135 Active Site Residues inEscherichia colidTDP-Glucose 4,6-Dehydrataseâ€. Biochemistry, 2001, 40, 12497-12504.	1.2	29
50	A facile means for the identification of indolic compounds from plant tissues. Plant Journal, 2014, 79, 1065-1075.	2.8	26
51	Candidate Serum Biomarkers for Early Intestinal Cancer Using ¹⁵ N Metabolic Labeling and Quantitative Proteomics in the <i>Apc</i> ^{<i>Min/+</i>} Mouse. Journal of Proteome Research, 2013, 12, 4152-4166.	1.8	25
52	<scp>PELPIII</scp> : the class <scp>III</scp> pistilâ€specific extensinâ€like <i><scp>N</scp>icotiana tabacum</i> proteins are essential for interspecific incompatibility. Plant Journal, 2013, 74, 805-814.	2.8	25
53	Analyzing plant defenses in nature. Plant Signaling and Behavior, 2009, 4, 743-745.	1.2	23
54	3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis. Phytochemistry, 2017, 138, 83-92.	1.4	23

#	Article	IF	CITATIONS
55	Improve your Galaxy text life: The Query Tabular Tool. F1000Research, 2018, 7, 1604.	0.8	21
56	Enzymes as Parts in Need of Replacement – and How to Extend Their Working Life. Trends in Plant Science, 2020, 25, 661-669.	4.3	20
57	Easy and accurate calculation of programmed temperature gas chromatographic retention times by back-calculation of temperature and hold-up time profiles. Journal of Chromatography A, 2012, 1263, 179-188.	1.8	19
58	Plant metabolomics for plant chemical responses to belowground community change by climate change. Journal of Plant Biology, 2014, 57, 137-149.	0.9	16
59	Convergent evolution of a blood-red nectar pigment in vertebrate-pollinated flowers. Proceedings of the United States of America, 2022, 119, .	3.3	15
60	Crystal structure of At2g03760, a putative steroid sulfotransferase fromArabidopsis thaliana. Proteins: Structure, Function and Bioinformatics, 2004, 57, 854-857.	1.5	14
61	An improved method for fast and selective separation of carotenoids by LC–MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1067, 34-37.	1.2	14
62	Genetic analysis of stilbenoid profiles in grapevine stems reveals a major mQTL hotspot on chromosome 18 associated with disease-resistance motifs. Horticulture Research, 2019, 6, 121.	2.9	13
63	Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana. Planta, 2015, 241, 539-548.	1.6	12
64	Metabolic signatures of Arabidopsis thaliana abiotic stress responses elucidate patterns in stress priming, acclimation, and recovery. Stress Biology, 2022, 2, 1.	1.5	12
65	The transmitting tissue of Nicotiana tabacum is not essential to pollen tube growth, and its ablation can reverse prezygotic interspecific barriers. Plant Reproduction, 2013, 26, 339-350.	1.3	11
66	Measuring relative utilization of aerobic glycolysis in breast cancer cells by positional isotopic discrimination. FEBS Letters, 2016, 590, 3179-3187.	1.3	11
67	Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Frontiers in Chemistry, 2018, 6, 191.	1.8	9
68	Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus. Photosynthesis Research, 2014, 122, 69-86.	1.6	8
69	Direct detection of surface localized specialized metabolites from Glycyrrhiza lepidota (American) Tj ETQq1 1 C).784314 rg 1.6	gBT <mark>/</mark> Overloc <mark>k</mark>
70	Sequence of the cDNA for the heart/muscle isoform of mouse cytochrome c oxidase subunit VIII. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 311-314.	2.4	7
71	Crystal structure of the protein from gene At3g17210 of Arabidopsis thaliana. Proteins: Structure, Function and Bioinformatics, 2004, 57, 218-220.	1.5	7
72	Differential Accumulation and Degradation Of Anthocyanins In Red Norland Periderm is Dependent On Soil Type And Tuber Storage Duration. American Journal of Potato Research, 2014, 91, 696-705.	0.5	7

#	Article	IF	CITATIONS
73	Development of a Simple, Fast, and Accurate Method for the Direct Quantification of Selective Estrogen Receptor Modulators Using Stable Isotope Dilution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2013, 61, 7028-7037.	2.4	6
74	Regioselective solvent-phase deuteration of polyphenolic compounds informs their identification by mass spectrometry. Analytical Biochemistry, 2014, 452, 76-85.	1.1	6
75	Seasonal changes in metabolic profiles of galls and leaves of Rhus chinensis using gas chromatography mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry. Journal of Plant Biology, 2014, 57, 127-135.	0.9	5
76	Novel NMR and MS Approaches to Metabolomics. Methods in Pharmacology and Toxicology, 2012, , 199-230.	0.1	4
77	Clarifying the role of maples in atypical myopathy. Equine Veterinary Journal, 2014, 46, 135-136.	0.9	4
78	Extraction, purification, methylation and GC–MS analysis of short-chain carboxylic acids for metabolic flux analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1028, 165-174.	1.2	4
79	Leaf Spray Mass Spectrometry: A Rapid Ambient Ionization Technique to Directly Assess Metabolites from Plant Tissues. Journal of Visualized Experiments, 2018, , .	0.2	4
80	Cultivation of native plants for seed and biomass yield. Agronomy Journal, 2020, 112, 1815-1827.	0.9	4
81	Novel genes expressed in the chick otocyst during development: Identification using differential display of RNA. International Journal of Developmental Neuroscience, 1997, 15, 585-594.	0.7	3
82	Qualitative and Quantitative Screening of Amino Acids in Plant Tissues. Methods in Molecular Biology, 2012, 918, 165-178.	0.4	3
83	Inhibition of <i>Ophiognomonia clavigignenti-juglandacearum</i> by <i>Juglans</i> Species Bark Extracts. Plant Disease, 2015, 99, 401-408.	0.7	3
84	Chapter 20 Metabolic Labeling Approaches for the Relative Quantification of Proteins. Comprehensive Analytical Chemistry, 2008, , 479-530.	0.7	2
85	High Enrichment [13 C]â€Labeling of Plants Grown Hydroponically from Seed to Seed in a Controlled 13 Câ€Carbon Dioxide Atmosphere Enclosure. Current Protocols in Plant Biology, 2018, 3, e20069.	2.8	2
86	Targeted Deuteration of Polyphenolics for Their Qualitative and Quantitative Metabolomic Analysis in Plant-Derived Extracts. Methods in Molecular Biology, 2014, 1083, 17-29.	0.4	2