
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7663981/publications.pdf Version: 2024-02-01

DETEDIKELIV

#	Article	IF	CITATIONS
1	Photocatalytic degradation of contaminants of emerging concern using a low-cost and efficient black bismuth titanate-based water treatment reactor. Journal of Water Process Engineering, 2022, 45, 102525.	5.6	3
2	Photocatalytic microfiltration membranes produced by magnetron sputtering with self-cleaning capabilities. Thin Solid Films, 2022, 747, 139143.	1.8	11
3	Multifractal Analysis to Determine the Effect of Surface Topography on the Distribution, Density, Dispersion and Clustering of Differently Organised Coccal-Shaped Bacteria. Antibiotics, 2022, 11, 551.	3.7	2
4	Development of a rapid method for assessing the efficacy of antibacterial photocatalytic coatings. Talanta, 2021, 225, 122009.	5.5	5
5	The Removal of Meat Exudate and Escherichia coli from Stainless Steel and Titanium Surfaces with Irregular and Regular Linear Topographies. International Journal of Environmental Research and Public Health, 2021, 18, 3198.	2.6	4
6	Design and optimisation of a low-cost titanium dioxide-coated stainless steel mesh photocatalytic water treatment reactor. Journal of Cleaner Production, 2021, 297, 126641.	9.3	18
7	Magnetron co-sputtered Bi12TiO20/Bi4Ti3O12 composite – An efficient photocatalytic material with photoinduced oxygen vacancies for water treatment application. Applied Surface Science, 2021, 552, 149486.	6.1	24
8	Visible light photocatalytic bismuth oxide coatings are effective at suppressing aquatic cyanobacteria and degrading free-floating genomic DNA. Journal of Environmental Sciences, 2021, 104, 128-136.	6.1	4
9	Biofilm associated genotypes of multiple antibiotic resistant Pseudomonas aeruginosa. BMC Genomics, 2021, 22, 572.	2.8	11
10	Low-temperature synthesis of vertically aligned graphene through microwave-assisted chemical vapour deposition. Thin Solid Films, 2021, 733, 138801.	1.8	13
11	The effect of TiO2 coatings on the formation of ozone and nitrogen oxides in non-thermal atmospheric pressure plasma. Journal of Environmental Chemical Engineering, 2021, 9, 106046.	6.7	4
12	Biofilm Control Strategies: Engaging with the Public. Antibiotics, 2020, 9, 465.	3.7	3
13	Crystalline TiO2 supported on stainless steel mesh deposited in a one step process via pulsed DC magnetron sputtering for wastewater treatment applications. Journal of Materials Research and Technology, 2020, 9, 5761-5773.	5.8	16
14	Nb-doped TiO2 coatings developed by high power impulse magnetron sputtering-chemical vapor deposition hybrid deposition process. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 033410.	2.1	2
15	Micro-Patterning of Magnetron Sputtered Titanium Dioxide Coatings and Their Efficiency for Photocatalytic Applications. Coatings, 2020, 10, 68.	2.6	5
16	Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4. Ceramics International, 2019, 45, 22961-22971.	4.8	31
17	Nextâ€Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithiumâ€ion Batteries. Batteries and Supercaps, 2019, 2, 399-400.	4.7	0
18	Conversion of aluminium oxide coated films for food packaging applications—From a single layer material to a complete pouch. Food Packaging and Shelf Life, 2019, 20, 100309.	7.5	9

#	Article	IF	CITATIONS
19	Novel and versatile TiO2 thin films on PET for photocatalytic removal of contaminants of emerging concern from water. Chemical Engineering Journal, 2019, 370, 1251-1261.	12.7	32
20	Nextâ€Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithiumâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 448-453.	4.7	52
21	Reactive Magnetron Sputter Deposition of Copper on TiO2 Support for Photoreduction of CO2 to CH4. IOP Conference Series: Materials Science and Engineering, 2019, 559, 012017.	0.6	3
22	The antimicrobial effect of metal substrates on food pathogens. Food and Bioproducts Processing, 2019, 113, 68-76.	3.6	32
23	Effectiveness of titanium nitride silver coatings against Staphylococcus spp. in the presence of BSA and whole blood conditioning agents. International Biodeterioration and Biodegradation, 2019, 141, 44-51.	3.9	7
24	The effects of blood conditioning films on the antimicrobial and retention properties of zirconium-nitride silver surfaces. Colloids and Surfaces B: Biointerfaces, 2019, 173, 303-311.	5.0	17
25	The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO 2). Polymer Degradation and Stability, 2018, 150, 31-36.	5.8	151
26	Visible light active photocatalytic C-doped titanium dioxide films deposited via reactive pulsed DC magnetron co-sputtering: Properties and photocatalytic activity. Vacuum, 2018, 149, 214-224.	3.5	42
27	Mechanisms of atmospheric pressure plasma treatment of BOPP. Plasma Processes and Polymers, 2018, 15, 1700051.	3.0	3
28	Use of ion-assisted sputtering technique for producing photocatalytic titanium dioxide thin films: Influence of thermal treatments on structural and activity properties based on the decomposition of stearic acid. Polymer Degradation and Stability, 2018, 157, 1-8.	5.8	1
29	The Influence of Pits on the Tribological Behavior of Grey Cast Iron under Dry Sliding. Mathematical Problems in Engineering, 2018, 2018, 1-9.	1.1	6
30	Magnetron Sputter-Coated Nanoparticle MoS ₂ Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. ACS Omega, 2018, 3, 7235-7242.	3.5	22
31	Titania coating of mesoporous silica nanoparticles for improved biocompatibility and drug release within blood vessels. Acta Biomaterialia, 2018, 76, 208-216.	8.3	21
32	Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors, 2018, 8, 53.	4.7	252
33	Mechanical, pH and Thermal Stability of Mesoporous Hydroxyapatite. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 84-91.	3.7	29
34	Highly efficient photocatalytic bismuth oxide coatings and their antimicrobial properties under visible light irradiation. Applied Catalysis B: Environmental, 2018, 239, 223-232.	20.2	70
35	Novel synthesis of mesoporous hydroxyapatite using carbon nanorods as a hard-template. Ceramics International, 2017, 43, 5412-5416.	4.8	29
36	Superhydrophobic photocatalytic PTFE – Titania coatings deposited by reactive pDC magnetron sputtering from a blended powder target. Materials Chemistry and Physics, 2017, 190, 108-113.	4.0	14

#	Article	IF	CITATIONS
37	3D Printed Graphene Based Energy Storage Devices. Scientific Reports, 2017, 7, 42233.	3.3	345
38	Pulsed DC magnetron sputtering deposition of crystalline photocatalytic titania coatings at elevated process pressures. Materials Science in Semiconductor Processing, 2017, 71, 188-196.	4.0	15
39	Can Ultrasound or pH Influence Pd Distribution on the Surface of HAP to Improve Its Catalytic Properties in the Dry Reforming of Methane?. Catalysis Letters, 2017, 147, 2200-2208.	2.6	8
40	Oxygen-controlled structures and properties of transparent conductive SnO2:F films. Journal of Alloys and Compounds, 2017, 695, 765-770.	5.5	15
41	Reactive magnetron sputtering deposition of bismuth tungstate onto titania nanoparticles for enhancing visible light photocatalytic activity. Applied Surface Science, 2017, 392, 590-597.	6.1	20
42	Deposition of Visible Light-Active C-Doped Titania Films via Magnetron Sputtering Using CO2 as a Source of Carbon. Nanomaterials, 2017, 7, 113.	4.1	27
43	Reel-to-Reel Atmospheric Pressure Dielectric Barrier Discharge (DBD) Plasma Treatment of Polypropylene Films. Applied Sciences (Switzerland), 2017, 7, 337.	2.5	8
44	The Influence of Rotating Direction on the Tribological Behavior of Grey Cast Iron with Curve Distributed Pit Textured Surface. Mathematical Problems in Engineering, 2017, 2017, 1-10.	1.1	2
45	Reactive Magnetron Sputter Deposition of Bismuth Tungstate Coatings for Water Treatment Applications under Natural Sunlight. Catalysts, 2017, 7, 283.	3.5	20
46	High Yield Synthesis of Hydroxyapatite (HAP) and Palladium Doped HAP via a Wet Chemical Synthetic Route. Catalysts, 2016, 6, 119.	3.5	16
47	A Novel Technique for the Deposition of Bismuth Tungstate onto Titania Nanoparticulates for Enhancing the Visible Light Photocatalytic Activity. Coatings, 2016, 6, 29.	2.6	11
48	Deposition of Visible Light Active Photocatalytic Bismuth Molybdate Thin Films by Reactive Magnetron Sputtering. Materials, 2016, 9, 67.	2.9	22
49	Mass Spectrometric Observations of the Ionic Species in a Double Dielectric Barrier Discharge Operating in Nitrogen. Plasma Processes and Polymers, 2016, 13, 649-653.	3.0	5
50	The effect of surface properties of polycrystalline, single phase metal coatings on bacterial retention. International Journal of Food Microbiology, 2015, 197, 92-97.	4.7	22
51	Microbial populations on brewery filling hall surfaces – Progress towards functional coatings. Food Control, 2015, 55, 1-11.	5.5	15
52	In situ electrochemical characterisation of graphene and various carbon-based electrode materials: an internal standard approach. RSC Advances, 2015, 5, 37281-37286.	3.6	57
53	2D nanosheet molybdenum disulphide (MoS ₂) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale, 2015, 7, 18152-18168.	5.6	104
54	Photocatalytic TiO2 and Doped TiO2 Coatings to Improve the Hygiene of Surfaces Used in Food and Beverage Processing—A Study of the Physical and Chemical Resistance of the Coatings. Coatings, 2014, 4, 433-449.	2.6	17

#	Article	IF	CITATIONS
55	Structural Formation and Photocatalytic Activity of Magnetron Sputtered Titania and Doped-Titania Coatings. Molecules, 2014, 19, 16327-16348.	3.8	33
56	Diffusion studies in magnetron sputter deposited silicon nitride films. Surface and Coatings Technology, 2014, 255, 37-42.	4.8	23
57	Quantifying the pattern of microbial cell dispersion, density and clustering on surfaces of differing chemistries and topographies using multifractal analysis. Journal of Microbiological Methods, 2014, 104, 101-108.	1.6	27
58	Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings, 2014, 4, 732-746.	2.6	206
59	An Investigation into W or Nb or ZnFe2O4 Doped Titania Nanocomposites Deposited from Blended Powder Targets for UV/Visible Photocatalysis. Coatings, 2013, 3, 153-165.	2.6	3
60	Optimization Studies of Photocatalytic Tungsten-Doped Titania Coatings Deposited by Reactive Magnetron Co-Sputtering. Coatings, 2013, 3, 194-207.	2.6	24
61	Characterisation Studies of the Structure and Properties of As-Deposited and Annealed Pulsed Magnetron Sputtered Titania Coatings. Coatings, 2013, 3, 166-176.	2.6	12
62	Photocatalytic Activity of Reactively Sputtered Titania Coatings Deposited Using a Full Face Erosion Magnetron. Coatings, 2013, 3, 177-193.	2.6	7
63	Nanoscratch testing of atomic layer deposition and magnetron sputtered TiO2and Al2O3coatings on polymeric substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 01A132.	2.1	13
64	Characterization studies of aluminum oxide barrier coatings on polymeric substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, 041502.	2.1	10
65	Influence of inert gas species on the growth of silver and molybdenum films via a magnetron discharge. Surface and Coatings Technology, 2011, 206, 1648-1652.	4.8	16
66	Investigations of diffusion behaviour in Al-doped zinc oxide and zinc stannate coatings. Thin Solid Films, 2011, 520, 1368-1374.	1.8	22
67	Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings. Surface and Coatings Technology, 2010, 205, 1606-1610.	4.8	150
68	Cathode Current Density Distributions in High Power Impulse and Direct Current Magnetron Sputtering Modes. Plasma Processes and Polymers, 2009, 6, S548.	3.0	16
69	Measurements of Deposition Rate and Substrate Heating in a HiPIMS Discharge. Plasma Processes and Polymers, 2009, 6, S543.	3.0	40
70	High Temporal Resolution Ion Energy Distribution Functions in HIPIMS Discharges. Plasma Processes and Polymers, 2009, 6, S610.	3.0	11
71	A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings. Surface and Coatings Technology, 2009, 204, 1137-1140.	4.8	116
72	The characteristics of the plasma in a powder sputtering rig. Thin Solid Films, 2008, 516, 4030-4035.	1.8	8

PETER J KELLY

#	Article	IF	CITATIONS
73	On the Potential of CVD Diamond Films as Mechanical Seal Face Materials. Tribology Transactions, 2008, 51, 33-43.	2.0	7
74	The Influence of Pulse Frequency and Duty on the Deposition Rate in Pulsed Magnetron Sputtering. Plasma Processes and Polymers, 2007, 4, 246-252.	3.0	29
75	A New Approach to the Deposition of Elemental Boron and Boron-Based Coatings by Pulsed Magnetron Sputtering of Loosely Packed Boron Powder Targets. Plasma Processes and Polymers, 2007, 4, S160-S165.	3.0	9
76	The Introduction of Alternative Process Gas Regimes during the Reactive Sputter Deposition of Titania Coatings. Plasma Processes and Polymers, 2007, 4, S294-S298.	3.0	1
77	Properties of Pulsed Magnetron Sputtered TiO2 Coatings Grown under Different Magnetron Configurations and Power Deliver Modes. Plasma Processes and Polymers, 2007, 4, S299-S304.	3.0	8