Seiji Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7663544/publications.pdf

Version: 2024-02-01

		186265	206112
51	2,394 citations	28	48
papers	citations	h-index	g-index
5 0	5 0	5 0	4071
53	53	53	4371
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Identification of Innate IL-5–Producing Cells and Their Role in Lung Eosinophil Regulation and Antitumor Immunity. Journal of Immunology, 2012, 188, 703-713.	0.8	258
2	CD206+ M2-like macrophages regulate systemic glucose metabolism by inhibiting proliferation of adipocyte progenitors. Nature Communications, 2017, 8, 286.	12.8	178
3	Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Scientific Reports, 2015, 5, 8505.	3.3	134
4	PDGFR-Î ² as a Positive Regulator of Tissue Repair in a Mouse Model of Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 353-367.	4.3	101
5	Tissue Myeloid Progenitors Differentiate into Pericytes through TGF-Î ² Signaling in Developing Skin Vasculature. Cell Reports, 2017, 18, 2991-3004.	6.4	97
6	Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 241-258.	7.3	95
7	Vascular Endothelial Growth Factor Receptor-1 Signaling Promotes Mobilization of Macrophage Lineage Cells from Bone Marrow and Stimulates Solid Tumor Growth. Cancer Research, 2010, 70, 8211-8221.	0.9	85
8	Silencing of Fas-associated Death Domain Protects Mice from Septic Lung Inflammation and Apoptosis. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 806-815.	5.6	82
9	HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance. Diabetes, 2016, 65, 3649-3659.	0.6	81
10	Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice. Scientific Reports, 2016, 6, 23097.	3.3	75
11	A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Scientific Reports, 2017, 7, 3855.	3.3	7 3
12	PDGFRÎ ² Regulates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity. Diabetes, 2017, 66, 1008-1021.	0.6	66
13	Dose-Dependent Modulatory Effects of Insulin on Glucose-Induced Endothelial Senescence In Vitro and In Vivo: A Relationship between Telomeres and Nitric Oxide. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 591-599.	2.5	65
14	PDGFRα plays a crucial role in connective tissue remodeling. Scientific Reports, 2016, 5, 17948.	3.3	61
15	PDGFR- \hat{l}^2 restores blood-brain barrier functions in a mouse model of focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1501-1515.	4.3	61
16	Bofutsushosan improves gut barrier function with a bloom of Akkermansia muciniphila and improves glucose metabolism in mice with diet-induced obesity. Scientific Reports, 2020, 10, 5544.	3.3	51
17	Insights Into Sepsis Therapeutic Design Based on the Apoptotic Death Pathway. Journal of Pharmacological Sciences, 2010, 114, 354-365.	2.5	50
18	Significance of Extracellular Vesicles: Pathobiological Roles in Disease. Cell Structure and Function, 2016, 41, 137-143.	1.1	47

#	Article	IF	CITATIONS
19	Modulation of glucocorticoid receptor expression, inflammation, and cell apoptosis in septic guinea pig lungs using methylprednisolone. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L998-L1006.	2.9	46
20	Successful Treatment of Acute Lung Injury with Pitavastatin in Septic Mice: Potential Role of Glucocorticoid Receptor Expression in Alveolar Macrophages. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 381-390.	2.5	46
21	Bidirectional crosstalk between neutrophils and adipocytes promotes adipose tissue inflammation. FASEB Journal, 2019, 33, 11821-11835.	0.5	46
22	Powerful Homeostatic Control of Oligodendroglial Lineage by PDGFR $\hat{l}\pm$ in Adult Brain. Cell Reports, 2019, 27, 1073-1089.e5.	6.4	46
23	High glucose-induced apoptosis in human coronary artery endothelial cells involves up-regulation of death receptors. Cardiovascular Diabetology, 2011, 10, 73.	6.8	42
24	NK Cells Control Tumor-Promoting Function of Neutrophils in Mice. Cancer Immunology Research, 2018, 6, 348-357.	3.4	39
25	Increased death receptor pathway of apoptotic signaling in septic mouse aorta: effect of systemic delivery of FADD siRNA. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H92-H101.	3.2	37
26	Nuclear factor-l ^o B decoy oligodeoxynucleotides ameliorate impaired glucose tolerance and insulin resistance in mice with cecal ligation and puncture-induced sepsis*. Critical Care Medicine, 2009, 37, 2791-2799.	0.9	35
27	Role of ion channels in sepsisâ€induced atrial tachyarrhythmias in guinea pigs. British Journal of Pharmacology, 2012, 166, 390-400.	5.4	34
28	MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki Disease. Scientific Reports, 2018, 8, 1016.	3.3	31
29	Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathology International, 2017, 67, 235-246.	1.3	30
30	PDGFR-Î ² Plays a Key Role in the Ectopic Migration of Neuroblasts in Cerebral Stroke. Stem Cells, 2016, 34, 685-698.	3.2	27
31	MicroRNA-93 may control vascular endothelial growth factor A in circulating peripheral blood mononuclear cells in acute Kawasaki disease. Pediatric Research, 2016, 80, 425-432.	2.3	26
32	Vascular PDGFR-alpha protects against BBB dysfunction after stroke in mice. Angiogenesis, 2021, 24, 35-46.	7.2	26
33	Up-Regulation of Histamine H ₄ Receptors Contributes to Splenic Apoptosis in Septic Mice: Counteraction of the Antiapoptotic Action of Nuclear Factor-κB. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 730-737.	2.5	24
34	Partial depletion of CD206-positive M2-like macrophages induces proliferation of beige progenitors and enhances browning after cold stimulation. Scientific Reports, 2018, 8, 14567.	3.3	24
35	The Novel Pathogenesis of Retinopathy Mediated by Multiple RTK Signals is Uncovered in Newly Developed Mouse Model. EBioMedicine, 2018, 31, 190-201.	6.1	22
36	Stromal cell-derived factor 1 (SDF1) attenuates platelet-derived growth factor-B (PDGF-B)-induced vascular remodeling for adipose tissue expansion in obesity. Angiogenesis, 2020, 23, 667-684.	7.2	19

#	Article	IF	CITATIONS
37	Role of Retinoic Acid-Related Orphan Receptor-α in Differentiation of Human Mesenchymal Stem Cells along with Osteoblastic Lineage. Pathobiology, 2010, 77, 28-37.	3.8	18
38	Mediator cyclinâ€dependent kinases upregulate transcription of inflammatory genes in cooperation with <scp>NF</scp> â€PB and C/ <scp>EBP</scp> β on stimulation of Tollâ€like receptor 9. Genes To Cells, 2017, 22, 265-276.	1.2	17
39	Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations. PLoS ONE, 2015, 10, e0135760.	2.5	15
40	Sirt1 activator induces proangiogenic genes in preadipocytes to rescue insulin resistance in diet-induced obese mice. Scientific Reports, 2018, 8, 11370.	3.3	14
41	Critical role of platelet-derived growth factor–α in angiogenesis after indirect bypass in a murine moyamoya disease model. Journal of Neurosurgery, 2021, 134, 1535-1543.	1.6	12
42	Glioma-Derived Platelet-Derived Growth Factor-BB Recruits Oligodendrocyte Progenitor Cells via Platelet-Derived Growth Factor Receptor- \hat{l}_{\pm} and Remodels Cancer Stroma. American Journal of Pathology, 2016, 186, 1081-1091.	3.8	10
43	Different PDGF Receptor Dimers Drive Distinct Migration Modes of the Mouse Skin Fibroblast. Cellular Physiology and Biochemistry, 2018, 51, 1461-1479.	1.6	9
44	Trichohyalin-like 1 protein plays a crucial role in proliferation and anti-apoptosis of normal human keratinocytes and squamous cell carcinoma cells. Cell Death Discovery, 2020, 6, 109.	4.7	9
45	Dysregulation of Amphiregulin stimulates the pathogenesis of cystic lymphangioma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
46	Oligodendrogenesis and Myelin Formation in the Forebrain Require Platelet-derived Growth Factor Receptor-alpha. Neuroscience, 2020, 436, 11-26.	2.3	7
47	Sympathetic Control of VEGF Angiogenic Signaling. Circulation Research, 2007, 101, 642-644.	4.5	5
48	Generation and characterization of a Meflin-CreERT2 transgenic line for lineage tracing in white adipose tissue. PLoS ONE, 2021, 16, e0248267.	2.5	5
49	Cerebrospinal fluid may flow out from the brain through the frontal skull base and choroid plexus: a gold colloid and cadaverine injection study in mouse fetus. Child's Nervous System, 2021, 37, 3013-3020.	1.1	3
50	Bone marrow transplantation into <i>Abcd1</i> â€deficient mice: Distribution of donor derivedâ€cells and biological characterization of the brain of the recipient mice. Journal of Inherited Metabolic Disease, 2021, 44, 718-727.	3.6	1
51	Expression of TNFâ€R1 and Fas in coronary arterioles of type 2 diabetic mice. FASEB Journal, 2012, 26, 842.2.	0.5	0