Corinne Kostic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7663220/publications.pdf Version: 2024-02-01

CORINNE KOSTIC

#	Article	IF	CITATIONS
1	The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biology, 2022, 20, e3001649.	2.6	32
2	A new mouse model for retinal degeneration due to Fam161a deficiency. Scientific Reports, 2021, 11, 2030.	1.6	17
3	Quantification of the early pupillary dilation kinetic to assess rod and cone activity. Scientific Reports, 2021, 11, 9549.	1.6	Ο
4	Enhancer of Zeste Homolog 2 (EZH2) Contributes to Rod Photoreceptor Death Process in Several Forms of Retinal Degeneration and Its Activity Can Serve as a Biomarker for Therapy Efficacy. International Journal of Molecular Sciences, 2021, 22, 9331.	1.8	5
5	An in vitro Model of Human Retinal Detachment Reveals Successive Death Pathway Activations. Frontiers in Neuroscience, 2020, 14, 571293.	1.4	6
6	Lentiviral mediated RPE65 gene transfer in healthy hiPSCs-derived retinal pigment epithelial cells markedly increased RPE65 mRNA, but modestly protein level. Scientific Reports, 2020, 10, 8890.	1.6	5
7	Maturation of the Pupil Light Reflex Occurs Until Adulthood in Mice. Frontiers in Neurology, 2019, 10, 56.	1.1	6
8	Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Translational Research, 2017, 188, 40-57.e4.	2.2	21
9	Rai1 frees mice from the repression of active wake behaviors by light. ELife, 2017, 6, .	2.8	14
10	Determination of Rod and Cone Influence to the Early and Late Dynamic of the Pupillary Light Response. , 2016, 57, 2501.		34
11	<i>Adamts18</i> deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development. Biology Open, 2016, 5, 1585-1594.	0.6	31
12	Animal modelling for inherited central vision loss. Journal of Pathology, 2016, 238, 300-310.	2.1	50
13	Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Molecular Brain, 2016, 9, 64.	1.3	9
14	Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors. Molecular Therapy - Methods and Clinical Development, 2015, 2, 14064.	1.8	43
15	Notch signaling in the pigmented epithelium of the anterior eye segment promotes ciliary body development at the expense of iris formation. Pigment Cell and Melanoma Research, 2014, 27, 580-589.	1.5	5
16	Rapid Cohort Generation and Analysis of Disease Spectrum of Large Animal Model of Cone Dystrophy. PLoS ONE, 2013, 8, e71363.	1.1	17
17	FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Human Molecular Genetics, 2012, 21, 5174-5184.	1.4	51
18	Reduction of choroidal neovascularization in mice by adenoâ€associated virusâ€delivered antiâ€vascular endothelial growth factor short hairpin RNA. Journal of Gene Medicine, 2012, 14, 632-641.	1.4	48

CORINNE KOSTIC

#	Article	IF	CITATIONS
19	Gene Therapy Regenerates Protein Expression in Cone Photoreceptors in Rpe65R91W/R91W Mice. PLoS ONE, 2011, 6, e16588.	1.1	26
20	Retinal Degeneration Progression Changes Lentiviral Vector Cell Targeting in the Retina. PLoS ONE, 2011, 6, e23782.	1.1	23
21	Remaining Rod Activity Mediates Visual Behavior in AdultRpe65â^'/â^'mice , 2010, 51, 6835.		13
22	In conditions of limited chromophore supply rods entrap 11-cis-retinal leading to loss of cone function and cell death. Human Molecular Genetics, 2009, 18, 1266-1275.	1.4	47
23	Lentiviral Gene Transfer-Mediated Cone Vision Restoration in RPE65 Knockout Mice. Advances in Experimental Medicine and Biology, 2008, 613, 89-95.	0.8	8
24	High Yield of Cells Committed to the Photoreceptor Fate from Expanded Mouse Retinal Stem Cells. Stem Cells, 2006, 24, 2060-2070.	1.4	42
25	Lentiviral Gene Transfer of Rpe65 Rescues Survival and Function of Cones in a Mouse Model of Leber Congenital Amaurosis. PLoS Medicine, 2006, 3, e347.	3.9	100
26	Lentiviral Vectors Containing a Retinal Pigment Epithelium Specific Promoter for Leber Congenital Amaurosis Gene Therapy. Advances in Experimental Medicine and Biology, 2006, 572, 247-253.	0.8	9
27	419. Rescue of Cone Photoreceptors after Lentiviral Gene Transfer of Rpe65 cDNA in Knockout Mouse Models of Leber Congenital Amaurosis. Molecular Therapy, 2006, 13, S161.	3.7	1
28	Bmi1 Loss Produces an Increase in Astroglial Cells and a Decrease in Neural Stem Cell Population and Proliferation. Journal of Neuroscience, 2005, 25, 5774-5783.	1.7	112
29	Delivery of Ciliary Neurotrophic Factor via Lentiviral-Mediated Transfer Protects Axotomized Retinal Ganglion Cells for an Extended Period of Time. Human Gene Therapy, 2003, 14, 103-115.	1.4	101
30	Non-neural Regions of the Adult Human Eye: A Potential Source of Neurons?. , 2003, 44, 799.		20
31	Isolation of Multipotent Neural Precursors Residing in the Cortex of the Adult Human Brain. Experimental Neurology, 2001, 170, 48-62.	2.0	274
32	Isolation and characterization of sixteen novel p53 response genes. Oncogene, 2000, 19, 3978-3987.	2.6	42