Laure Rondi-Reig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7662805/publications.pdf

Version: 2024-02-01

46 papers 3,758 citations

30 h-index 223531 46 g-index

54 all docs

54 docs citations

54 times ranked 4700 citing authors

#	Article	IF	CITATIONS
1	The cerebellum on the epilepsy frontline. Trends in Neurosciences, 2022, 45, 337-338.	4.2	3
2	A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. Cerebellum, 2022, 21, 826-837.	1.4	16
3	Sushi domain-containing protein 4 controls synaptic plasticity and motor learning. ELife, 2021, 10, .	2.8	14
4	Flexibility as a marker of early cognitive decline in humanized apolipoprotein E $\hat{l}\mu4$ (ApoE4) mice. Neurobiology of Aging, 2021, 102, 129-138.	1.5	2
5	Validation of memory assessment in the Starmaze task: Data from 14 month-old APPPS1 mice and controls. Data in Brief, 2021, 37, 107266.	0.5	0
6	Choroid plexus APP regulates adult brain proliferation and animal behavior. Life Science Alliance, 2021, 4, e202000703.	1.3	7
7	Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation. Nature Communications, 2019, 10, 2251.	5.8	25
8	Anatomical and physiological foundations of cerebello-hippocampal interaction. ELife, 2019, 8, .	2.8	85
9	Cerebellar Volume in Autism: Literature Meta-analysis and Analysis of the Autism BrainÂlmaging Data Exchange Cohort. Biological Psychiatry, 2018, 83, 579-588.	0.7	59
10	A hippocampo-cerebellar centred network for the learning and execution of sequence-based navigation. Scientific Reports, 2017, 7, 17812.	1.6	58
11	Explicit memory creation during sleep demonstrates a causal role of place cells in navigation. Nature Neuroscience, 2015, 18, 493-495.	7.1	184
12	Cerebellar Contribution to Spatial Navigation: New Insights into Potential Mechanisms. Cerebellum, 2015, 14, 59-62.	1.4	23
13	Interaction Between Hippocampus and Cerebellum Crus I in Sequence-Based but not Place-Based Navigation. Cerebral Cortex, 2015, 25, 4146-4154.	1.6	120
14	How the cerebellum may monitor sensory information for spatial representation. Frontiers in Systems Neuroscience, 2014, 8, 205.	1.2	68
15	Single-Trial Properties of Place Cells in Control and CA1 NMDA Receptor Subunit 1-KO Mice. Journal of Neuroscience, 2014, 34, 15861-15869.	1.7	21
16	Oscillatory Dynamics and Place Field Maps Reflect Hippocampal Ensemble Processing of Sequence and Place Memory under NMDA Receptor Control. Neuron, 2014, 81, 402-415.	3.8	104
17	A Navigation Analysis Tool (NAT) to assess spatial behavior in open-field and structured mazes. Journal of Neuroscience Methods, 2013, 215, 196-209.	1.3	8
18	T-type channel blockade impairs long-term potentiation at the parallel fiber–Purkinje cell synapse and cerebellar learning. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20302-20307.	3.3	65

#	Article	IF	Citations
19	Mature Purkinje Cells Require the Retinoic Acid-Related Orphan Receptor-α (RORα) to Maintain Climbing Fiber Mono-Innervation and Other Adult Characteristics. Journal of Neuroscience, 2013, 33, 9546-9562.	1.7	62
20	The cerebellum: a new key structure in the navigation system. Frontiers in Neural Circuits, 2013, 7, 35.	1.4	133
21	Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior. PLoS ONE, 2013, 8, e67232.	1.1	51
22	Temporal Order Memory Assessed during Spatiotemporal Navigation As a Behavioral Cognitive Marker for Differential Alzheimer's Disease Diagnosis. Journal of Neuroscience, 2012, 32, 1942-1952.	1.7	66
23	Early detection of age-related memory deficits in individual mice. Neurobiology of Aging, 2011, 32, 1881-1895.	1.5	29
24	Pregnenolone sulfate and its enantiomer: Differential modulation of memory in a spatial discrimination task using forebrain NMDA receptor deficient mice. European Neuropsychopharmacology, 2011, 21, 211-215.	0.3	19
25	Cerebellum Shapes Hippocampal Spatial Code. Science, 2011, 334, 385-389.	6.0	166
26	Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14466-14471.	3.3	243
27	Role of the Cerebellar Cortex in Conditioned Goal-Directed Behavior. Journal of Neuroscience, 2010, 30, 13265-13271.	1.7	43
28	Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 2010, 107, 337-350.	0.7	105
29	A new approach for modeling episodic memory from rodents to humans: The temporal order memory. Behavioural Brain Research, 2010, 215, 172-179.	1.2	44
30	Modeling cerebellar learning for spatial cognition. BMC Neuroscience, 2009, 10, .	0.8	0
31	Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 2009, 19, 1199-1211.	0.9	117
32	MULTIMODAL SENSORY INTEGRATION AND CONCURRENT NAVIGATION STRATEGIES FOR SPATIAL COGNITION IN REAL AND ARTIFICIAL ORGANISMS. Journal of Integrative Neuroscience, 2007, 06, 327-366.	0.8	72
33	Impaired Sequential Egocentric and Allocentric Memories in Forebrain-Specific-NMDA Receptor Knock-Out Mice during a New Task Dissociating Strategies of Navigation. Journal of Neuroscience, 2006, 26, 4071-4081.	1.7	113
34	Spatial navigation impairment in mice lacking cerebellar LTD: a motor adaptation deficit?. Nature Neuroscience, 2005, 8, 1292-1294.	7.1	86
35	Is the cerebellum ready for navigation?. Progress in Brain Research, 2005, 148, 199-212.	0.9	46
36	p53 Inactivation leads to impaired motor synchronization in mice. European Journal of Neuroscience, 2003, 17, 2135-2146.	1,2	5

#	Article	IF	CITATIONS
37	Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience. Neuron, 2003, 38, 305-315.	3.8	426
38	To die or not to die, does it change the function? Behavior of transgenic mice reveals a role for developmental cell death. Brain Research Bulletin, 2002, 57, 85-91.	1.4	15
39	The role of climbing and parallel fibers inputs to cerebellar cortex in navigation. Behavioural Brain Research, 2002, 132, 11-18.	1.2	37
40	Forebrain-Specific Calcineurin Knockout Selectively Impairs Bidirectional Synaptic Plasticity and Working/Episodic-like Memory. Cell, 2001, 107, 617-629.	13.5	457
41	CA1-specific N-methyl-D-aspartate receptor knockout mice are deficient in solving a nonspatial transverse patterning task. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3543-3548.	3.3	90
42	Hu-Bcl-2 transgenic mice with supernumerary neurons exhibit timing impairment in a complex motor task. European Journal of Neuroscience, 1999, 11, 2285-2290.	1.2	20
43	Inhibition of neuronal (type 1) nitric oxide synthase prevents hyperaemia and hippocampal lesions resulting from kainate-induced seizures. Neuroscience, 1998, 84, 791-800.	1.1	53
44	staggerer phenotype in retinoid-related orphan receptor Â-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3960-3965.	3.3	268
45	Fear decrease in transgenic mice over-expressing bcl-2 in neurons. NeuroReport, 1997, 8, 2429-2432.	0.6	50
46	Role of the inferior olivary complex in motor skills and motor learning in the adult rat. Neuroscience, 1997, 77, 955-963.	1.1	63