Hyun Ho Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7662197/publications.pdf

Version: 2024-02-01

43 papers 1,959 citations

23 h-index

318942

312153 41 g-index

44 all docs

44 docs citations

44 times ranked 4104 citing authors

#	Article	IF	CITATIONS
1	The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS Nano, 2022, 16, 6960-7079.	7.3	149
2	Roadmap on quantum nanotechnologies. Nanotechnology, 2021, 32, 162003.	1.3	45
3	Structural Monoclinicity and Its Coupling to Layered Magnetism in Few-Layer Crl ₃ . ACS Nano, 2021, 15, 10444-10450.	7.3	14
4	Improved moisture stability of graphene transistors by controlling water molecule adsorption. Sensors and Actuators B: Chemical, 2021, 347, 130579.	4.0	6
5	Boosting the Optoelectronic Properties of Molybdenum Diselenide by Combining Phase Transition Engineering with Organic Cationic Dye Doping. ACS Nano, 2021, 15, 17769-17779.	7.3	10
6	Magnetoâ€Memristive Switching in a 2D Layer Antiferromagnet. Advanced Materials, 2020, 32, e1905433.	11.1	21
7	Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet Crl3. Nature Communications, 2020, 11, 4780.	5.8	34
8	Tunable layered-magnetism–assisted magneto-Raman effect in a two-dimensional magnet Crl ₃ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24664-24669.	3.3	20
9	Magnetic-Field-Induced Quantum Phase Transitions in a van der Waals Magnet. Physical Review X, 2020, 10, .	2.8	41
10	Memristive Switching: Magnetoâ€Memristive Switching in a 2D Layer Antiferromagnet (Adv. Mater.) Tj ETQq0 0 () rgBT /O\ 11.1	erlock 10 Tf !
11	Tailored Tunnel Magnetoresistance Response in Three Ultrathin Chromium Trihalides. Nano Letters, 2019, 19, 5739-5745.	4.5	51
12	Tailoring the crystallinity of solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene <i>via</i> controlled solidification. Soft Matter, 2019, 15, 7369-7373.	1.2	15
13	Effect of solvent structural isomer on microstructural evolution in polythiophene film during solidification. Organic Electronics, 2019, 71, 150-155.	1.4	4
14	Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11131-11136.	3.3	223
15	Electroceutical Residue-Free Graphene Device for Dopamine Monitoring and Neural Stimulation. ACS Biomaterials Science and Engineering, 2019, 5, 2013-2020.	2.6	5
16	Dimensionality-driven orthorhombic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MoT</mml:mi><mml:msub><mml:mathvariant="normal">e<mml:mn>2</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> at room temperature. Physical Review B, 2018, 97,.	mi 1.1	51
17	Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet. Nature Communications, 2018, 9, 5122.	5.8	97
18	One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. Nano Letters, 2018, 18, 4885-4890.	4.5	230

#	Article	IF	Citations
19	Facetâ€Mediated Growth of Highâ€Quality Monolayer Graphene on Arbitrarily Rough Copper Surfaces. Advanced Materials, 2016, 28, 2010-2017.	11.1	31
20	Heterogeneous Solid Carbon Sourceâ€Assisted Growth of Highâ€Quality Graphene via CVD at Low Temperatures. Advanced Functional Materials, 2016, 26, 562-568.	7.8	52
21	Wettingâ€Assisted Crack―and Wrinkleâ€Free Transfer of Waferâ€Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. Advanced Functional Materials, 2016, 26, 2070-2077.	7.8	73
22	Sheet Size-Induced Evaporation Behaviors of Inkjet-Printed Graphene Oxide for Printed Electronics. ACS Applied Materials & Electronics, 2016, 8, 3193-3199.	4.0	28
23	Ubiquitous Graphene Electronics on Scotch Tape. Scientific Reports, 2015, 5, 12575.	1.6	12
24	Graphene growth under Knudsen molecular flow on a confined catalytic metal coil. Nanoscale, 2015, 7, 1314-1324.	2.8	17
25	Boosting Photon Harvesting in Organic Solar Cells with Highly Oriented Molecular Crystals <i>via</i> Graphene–Organic Heterointerface. ACS Nano, 2015, 9, 8206-8219.	7.3	77
26	Clean Transfer of Wafer-Scale Graphene <i>via</i> Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons. ACS Nano, 2015, 9, 4726-4733.	7.3	61
27	Atomically Thin Epitaxial Template for Organic Crystal Growth Using Graphene with Controlled Surface Wettability. Nano Letters, 2015, 15, 2474-2484.	4.5	55
28	Graphene: Doping Graphene with an Atomically Thin Two Dimensional Molecular Layer (Adv. Mater.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
29	Graphene: Waterâ€Free Transfer Method for CVDâ€Grown Graphene and Its Application to Flexible Airâ€6table Graphene Transistors (Adv. Mater. 20/2014). Advanced Materials, 2014, 26, 3166-3166.	11.1	1
30	Waterâ€Free Transfer Method for CVDâ€Grown Graphene and Its Application to Flexible Airâ€Stable Graphene Transistors. Advanced Materials, 2014, 26, 3213-3217.	11.1	67
31	Doping Graphene with an Atomically Thin Two Dimensional Molecular Layer. Advanced Materials, 2014, 26, 8141-8146.	11.1	40
32	Inverse Transfer Method Using Polymers with Various Functional Groups for Controllable Graphene Doping. ACS Nano, 2014, 8, 7968-7975.	7.3	26
33	Substrate-Induced Solvent Intercalation for Stable Graphene Doping. ACS Nano, 2013, 7, 1155-1162.	7.3	54
34	High Performance Flexible Organic Thin Film Transistors (OTFTs) with Octadecyltrichlorsilane/Al ₂ O ₃ /Poly(4-vinylphenol) Multilayer Insulators. Journal of Nanoscience and Nanotechnology, 2012, 12, 1348-1352.	0.9	10
35	The effects of the surface morphology of poly(3,4-ethylenedioxythiophene) electrodes on the growth of pentacene, and the electrical performance of the bottom contact pentacene transistor. Solid-State Electronics, 2012, 67, 70-73.	0.8	23
36	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	11.1	228

#	Article	IF	Citations
37	Effects of iron(III) p-toluenesulfonate hexahydrate oxidant on the growth of conductive poly(3,4-ethylenedioxythiophene) (PEDOT) nanofilms by vapor phase polymerization. Synthetic Metals, 2011, 161, 1347-1352.	2.1	23
38	Fabrication of an a-IGZO Thin Film Transistor Using Selective Deposition of Cobalt by the Self-Assembly Monolayer (SAM) Process. Journal of Nanoscience and Nanotechnology, 2011, 11, 787-790.	0.9	4
39	Temperature Dependence of Bis(triisopropylsilylethynyl)-Pentacene Nanofilm Deposited on Octadecyltrichlorosilane Self Assembled Monolayer Surface as a Transistor Channel. Journal of Nanoscience and Nanotechnology, 2010, 10, 3489-3492.	0.9	1
40	Effects of Solvents on Poly(3,4-Ethylenedioxythiophene) (PEDOT) Thin Films Deposited on a (3-Aminopropyl)Trimethoxysilane (APS) Monolayer by Vapor Phase Polymerization. Electronic Materials Letters, 2010, 6, 17-22.	1.0	13
41	Aminosilane monolayer-assisted patterning of conductive poly(3,4-ethylenedioxythiophene) source/drain electrodes for bottom contact pentacene thin film transistors. Organic Electronics, 2010, 11, 338-343.	1.4	16
42	Application of tosylate-doped poly(3,4ethylenedioxythiophene) (PEDOT) films into bottom contact pentacene organic thin film transistors (OTFTs). Thin Solid Films, 2010, 518, 6315-6319.	0.8	10
43	Effects of the FeCl3 concentration on the polymerization of conductive poly(3,4-ethylenedioxythiophene) thin films on (3-aminopropyl) trimethoxysilane monolayer-coated SiO2 surfaces. Metals and Materials International, 2009, 15, 977-981.	1.8	21