

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7662076/publications.pdf Version: 2024-02-01

Ινν Μ Δειιο

#	Article	IF	CITATIONS
1	Allâ€Ambientâ€Processed CuSCN as an Inexpensive Alternative to Spiroâ€OMeTAD for Perovskiteâ€Based Devices. Energy Technology, 2021, 9, .	3.8	8
2	Perovskite/Siliconâ€Nanowireâ€Based Hybrid Heterojunctions for Fast and Broadband Photodetectors. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2000537.	2.4	9
3	Highly stable air processed perovskite solar cells by interfacial layer engineering. Chemical Engineering Journal, 2021, 423, 130334.	12.7	11
4	Ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells. Materials Advances, 2020, 1, 1866-1876.	5.4	20
5	Solution-Processed p-Type Copper Thiocyanate (CuSCN) Enhanced Sensitivity of PbS-Quantum-Dots-Based Photodiode. ACS Photonics, 2020, 7, 1628-1635.	6.6	8
6	High performance photodetectors using porous silicon-TiO ₂ heterostructure. Engineering Research Express, 2020, 2, 035021.	1.6	8
7	Tunable thiocyanate-doped perovskite microstructure via water-ethanol additives for stable solar cells at ambient conditions. Solar Energy Materials and Solar Cells, 2019, 200, 110029.	6.2	11
8	Low-cost photodetector architectures fabricated at room-temperature using nano-engineered silicon wafer and sol-gel TiO2 – based heterostructures. Scientific Reports, 2019, 9, 17994.	3.3	11
9	Highly Efficient and Ultrasensitive Largeâ€Area Flexible Photodetector Based on Perovskite Nanowires. Small, 2019, 15, e1804150.	10.0	81
10	An ultra-broadband perovskite-PbS quantum dot sensitized carbon nanotube photodetector. Nanoscale, 2018, 10, 9044-9052.	5.6	35
11	Inkjet-Printing of Methylammonium Lead Trihalide Perovskite-Based Flexible Optoelectronic Devices. , 2018, , .		2
12	High-performance pseudo-halide perovskite nanowire networks for stable and fast-response photodetector. Nano Energy, 2018, 51, 324-332.	16.0	53
13	Hysteresisâ€Free 1D Network Mixed Halideâ€Perovskite Semitransparent Solar Cells. Small, 2018, 14, e1802319.	10.0	13
14	Solvent-Antisolvent Ambient Processed Large Grain Size Perovskite Thin Films for High-Performance Solar Cells. Scientific Reports, 2018, 8, 12885.	3.3	109