Chloé-Agathe Azencott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7661485/publications.pdf

Version: 2024-02-01

933447 30 972 10 citations h-index papers

21 g-index 49 49 49 2239 docs citations times ranked citing authors all docs

713466

#	Article	IF	CITATIONS
1	Where Do We Stand in Regularization for Life Science Studies?. Journal of Computational Biology, 2022, 29, 213-232.	1.6	1
2	Interpretable network-guided epistasis detection. GigaScience, 2022, 11, .	6.4	5
3	Multitask group Lasso for Genome Wide association Studies in diverse populations. Pacific Symposium on Biocomputing, 2022, 27, 163-174.	0.7	O
4	A systematic analysis of gene–gene interaction in multiple sclerosis. BMC Medical Genomics, 2022, 15, 100.	1.5	3
5	The French Early Breast Cancer Cohort (FRESH): A Resource for Breast Cancer Research and Evaluations of Oncology Practices Based on the French National Healthcare System Database (SNDS). Cancers, 2022, 14, 2671.	3.7	5
6	Boosting GWAS using biological networks: A study on susceptibility to familial breast cancer. PLoS Computational Biology, 2021, 17, e1008819.	3.2	4
7	Drug Target Identification with Machine Learning: How to Choose Negative Examples. International Journal of Molecular Sciences, 2021, 22, 5118.	4.1	6
8	A new hybrid record linkage process to make epidemiological databases interoperable: application to the GEMO and GENEPSO studies involving BRCA1 and BRCA2 mutation carriers. BMC Medical Research Methodology, 2021, 21, 155.	3.1	3
9	Multitask group Lasso for Genome Wide association Studies in diverse populations. , 2021, , .		O
10	Novel methods for epistasis detection in genome-wide association studies. PLoS ONE, 2020, 15, e0242927.	2.5	9
11	Novel methods for epistasis detection in genome-wide association studies. , 2020, 15, e0242927.		0
12	Novel methods for epistasis detection in genome-wide association studies. , 2020, 15, e0242927.		0
13	Novel methods for epistasis detection in genome-wide association studies. , 2020, 15, e0242927.		O
14	Novel methods for epistasis detection in genome-wide association studies. , 2020, 15, e0242927.		0
15	Novel methods for epistasis detection in genome-wide association studies. , 2020, 15, e0242927.		O
16	Block HSIC Lasso: model-free biomarker detection for ultra-high dimensional data. Bioinformatics, 2019, 35, i427-i435.	4.1	44
17	Efficient multi-task chemogenomics for drug specificity prediction. PLoS ONE, 2018, 13, e0204999.	2.5	10
18	Machine learning and genomics: precision medicine versus patient privacy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170350.	3.4	46

#	Article	IF	Citations
19	The inconvenience of data of convenience: computational research beyond post-mortem analyses. Nature Methods, 2017, 14, 937-938.	19.0	9
20	Network-Guided Biomarker Discovery. Lecture Notes in Computer Science, 2016, , 319-336.	1.3	4
21	Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nature Communications, 2016, 7, 12460.	12.8	73
22	MULTITASK FEATURE SELECTION WITH TASK DESCRIPTORS., 2016,,.		1
23	The Evaluation of Tools Used to Predict the Impact of Missense Variants Is Hindered by Two Types of Circularity. Human Mutation, 2015, 36, 513-523.	2.5	283
24	Multi-Task Feature Selection on Multiple Networks via Maximum Flows. , 2014, , .		7
25	Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics, 2013, 29, i171-i179.	4.1	52
26	GLIDE: GPU-Based Linear Regression for Detection of Epistasis. Human Heredity, 2012, 73, 220-236.	0.8	32
27	Learning to Predict Chemical Reactions. Journal of Chemical Information and Modeling, 2011, 51, 2209-2222.	5.4	148
28	A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval. Bioinformatics, 2010, 26, 1348-1356.	4.1	88
29	Influence Relevance Voting: An Accurate And Interpretable Virtual High Throughput Screening Method. Journal of Chemical Information and Modeling, 2009, 49, 756-766.	5.4	49
30	One- to Four-Dimensional Kernels for Virtual Screening and the Prediction of Physical, Chemical, and Biological Properties. Journal of Chemical Information and Modeling, 2007, 47, 965-974.	5.4	56