
Chunya Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7661216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	18.7	85
2	On-skin paintable biogel for long-term high-fidelity electroencephalogram recording. Science Advances, 2022, 8, .	4.7	58
3	Antimicrobial second skin using copper nanomesh. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
4	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	23.0	199
5	Electronic fibers and textiles: Recent progress and perspective. IScience, 2021, 24, 102716.	1.9	60
6	Smart Fibers and Textiles for Personal Health Management. ACS Nano, 2021, 15, 12497-12508.	7.3	124
7	Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	57
8	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	8.5	159
9	Stable and Biocompatible Carbon Nanotube Ink Mediated by Silk Protein for Printed Electronics. Advanced Materials, 2020, 32, e2000165.	11.1	184
10	Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuliâ€Responsive Actuation. Advanced Science, 2020, 7, 1903048.	5.6	51
11	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	2.0	69
12	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	4.0	67
13	Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing. ACS Nano, 2020, 14, 3219-3226.	7.3	159
14	Seamless Graphene-Seal-Wrap as a Removable Protective Cover for Two-Dimensional Materials. , 2020, 2, 215-219.		6
15	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	2.0	38
16	Integrated textile sensor patch for real-time and multiplex sweat analysis. Science Advances, 2019, 5, eaax0649.	4.7	345
17	Silk-Based Advanced Materials for Soft Electronics. Accounts of Chemical Research, 2019, 52, 2916-2927.	7.6	232
18	Silkâ€Derived 2D Porous Carbon Nanosheets with Atomicallyâ€Dispersed Feâ€N <i>_x</i> Sites for Highly Efficient Oxygen Reaction Catalysts. Small, 2019, 15, e1804966.	5.2	64

CHUNYA WANG

#	Article	IF	CITATIONS
19	Hollow core–sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale, 2019, 11, 11856-11863.	2.8	33
20	Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter, 2019, 1, 168-179.	5.0	172
21	Silk-Derived Highly Active Oxygen Electrocatalysts for Flexible and Rechargeable Zn–Air Batteries. Chemistry of Materials, 2019, 31, 1023-1029.	3.2	84
22	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	11.1	779
23	Mineralâ€Templated 3D Graphene Architectures for Energyâ€Efficient Electrodes. Small, 2018, 14, e1801009.	5.2	21
24	Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Research, 2018, 11, 2347-2356.	5.8	70
25	CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research, 2018, 11, 1124-1134.	5.8	185
26	Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics. Nano Letters, 2018, 18, 7085-7091.	4.5	98
27	Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. Advanced Functional Materials, 2017, 27, 1605657.	7.8	413
28	Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Advanced Functional Materials, 2017, 27, 1606066.	7.8	522
29	Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 2017, 34, 562-569.	8.2	119
30	Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 13331-13338.	4.0	111
31	An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature–Pressure Detection. ACS Applied Materials & Interfaces, 2017, 9, 39484-39492.	4.0	210
32	Wearable Electronics: Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater (Adv. Electron. Mater. 9/2017). Advanced Electronic Materials, 2017, 3, .	2.6	0
33	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
34	Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater. Advanced Electronic Materials, 2017, 3, 1700193.	2.6	133
35	Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation. ACS Applied Materials & Interfaces, 2017, 9, 28596-28603.	4.0	270
36	Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. Journal of Materials Chemistry C, 2017, 5, 7604-7611.	2.7	147

CHUNYA WANG

#	Article	IF	CITATIONS
37	Carbonized Cotton Fabric for Highâ€Performance Wearable Strain Sensors. Advanced Functional Materials, 2017, 27, 1604795.	7.8	383
38	Silk nanofibers as high efficient and lightweight air filter. Nano Research, 2016, 9, 2590-2597.	5.8	181
39	Sheath–Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2016, 8, 20894-20899.	4.0	196
40	Wearable Strain Sensors: Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors (Adv. Mater. 31/2016). Advanced Materials, 2016, 28, 6639-6639.	11.1	17
41	Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers. Nano Letters, 2016, 16, 6695-6700.	4.5	171
42	Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. Advanced Materials, 2016, 28, 6640-6648.	11.1	749
43	Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon, 2015, 86, 358-362.	5.4	50
44	Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Advances, 2014, 4, 54115-54121.	1.7	28
45	Air Filtration in the Free Molecular Flow Regime: A Review of Highâ€Efficiency Particulate Air Filters Based on Carbon Nanotubes. Small, 2014, 10, 4543-4561.	5.2	279
46	A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon, 2014, 79, 424-431.	5.4	25
47	Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon panotubes. Chemical Communications, 2014, 50, 11158-11161	2.2	14