Anna Starzyńska- Janiszewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660900/publications.pdf

Version: 2024-02-01

777949 591227 32 735 13 27 citations h-index g-index papers 33 33 33 1094 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	In vitro shoot regeneration from organogenic callus culture and rooting of Carpathian endemic Aconitum bucovinense ZapaÅ, Plant Cell, Tissue and Organ Culture, 2022, 151, 177-187.	1.2	1
2	Fermentation with edible Rhizopus strains as a beneficial alternative method in wheat germ cake processing. Journal of Cereal Science, 2021, 102, 103309.	1.8	5
3	Rhizopus oligosporus and Lactobacillus plantarum Co-Fermentation as a Tool for Increasing the Antioxidant Potential of Grass Pea and Flaxseed Oil-Cake Tempe. Molecules, 2020, 25, 4759.	1.7	8
4	Fermentation with Edible Rhizopus Strains to Enhance the Bioactive Potential of Hull-Less Pumpkin Oil Cake. Molecules, 2020, 25, 5782.	1.7	6
5	Aspergillus oryzae (Koji Mold) and Neurospora intermedia (Oncom Mold) application for flaxseed oil cake processing. LWT - Food Science and Technology, 2020, 131, 109651.	2.5	9
6	Spelt wheat tempe as a value-added whole-grain food product. LWT - Food Science and Technology, 2019, 113, 108250.	2.5	18
7	Mould starter selection for extended solid-state fermentation of quinoa. LWT - Food Science and Technology, 2019, 99, 231-237.	2.5	20
8	Solid-State Fermented Flaxseed Oil Cake of Improved Antioxidant Capacity as Potential Food Additive. Journal of Food Processing and Preservation, 2017, 41, e12855.	0.9	11
9	Quinoa Tempe as a Valueâ€Added Food: Sensory, Nutritional, and Bioactive Parameters of Products from White, Red, and Black Seeds. Cereal Chemistry, 2017, 94, 491-496.	1.1	8
10	Fermentation of Colored Quinoa Seeds with <i>Neurospora intermedia</i> to Obtain Oncomâ€Type Products of Favorable Nutritional and Bioactive Characteristics. Cereal Chemistry, 2017, 94, 619-624.	1.1	11
11	Myo-inositol phosphates profile of buckwheat and quinoa seeds: Effects of hydrothermal processing and solid-state fermentation with Rhizopus oligosporus. International Journal of Food Properties, 2017, 20, 2088-2095.	1.3	10
12	Solid-State Fermentation Reduces Phytic Acid Level, Improves the Profile of Myo-inositol Phosphates and Enhances the Availability of Selected Minerals in Flaxseed Oil Cake. Food Technology and Biotechnology, 2017, 55, 413-419.	0.9	5
13	Effect of Solid-State Fermentation Tempe Type on Antioxidant and Nutritional Parameters of Buckwheat Groats as Compared with Hydrothermal Processing. Journal of Food Processing and Preservation, 2016, 40, 298-305.	0.9	12
14	Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. Journal of Cereal Science, 2016, 71, 116-121.	1.8	29
15	Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydrate Polymers, 2016, 142, 199-205.	5.1	80
16	Antioxidant Potential and α-galactosides Content of Unhulled Seeds of Dark Common Beans Subjected to Tempe-type Fermentation with <i>Rhizopus microsporus</i> var. <i>chinensis</i> and <i>Lactobacillus plantarum</i> . Food Science and Technology Research, 2015, 21, 765-770.	0.3	6
17	Application of Celluclast 1.5L in apple pectin extraction. Carbohydrate Polymers, 2015, 134, 251-257.	5.1	55
18	Development of complete hydrolysis of pectins from apple pomace. Food Chemistry, 2015, 172, 675-680.	4.2	59

#	Article	IF	CITATIONS
19	Effect of flaxseed oil cake addition on antioxidant potential of grass pea tempeh. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2015, , .	0.1	1
20	Proteolysis in tempeh-type products obtained with Rhizopus and Aspergillus strains from grass pea (Lathyrus sativus) seeds [pdf]. Acta Scientiarum Polonorum, Technologia Alimentaria, 2015, 14, 125-132.	0.2	7
21	Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (<i>Phaseolus vulgaris</i>) seeds. Journal of the Science of Food and Agriculture, 2014, 94, 359-366.	1.7	50
22	Effect of inositol and phytases on hematological indices and \hat{l}_{\pm} -1 acid glycoprotein levels in laying hens fed phosphorus-deficient corn-soybean meal-based diets. Poultry Science, 2013, 92, 199-204.	1.5	7
23	Effect of Flaxseed Oil-Cake Addition on the Nutritional Value of Grass Pea Tempeh. Food Science and Technology Research, 2013, 19, 1107-1114.	0.3	8
24	The influence of inoculum composition on selected bioactive and nutritional parameters of grass pea tempeh obtained by mixed-culture fermentation with <i>Rhizopus oligosporus</i> and <i>Aspergillus oryzae</i> strains. Food Science and Technology International, 2012, 18, 113-122.	1.1	16
25	Comparison of high-performance ion chromatography technique with microbiological assay of <i>myo</i> -inositol in plant components of poultry feeds. Journal of Animal and Feed Sciences, 2011, 20, 143-156.	0.4	12
26	The Effect of Germination on Antioxidant and Nutritional Parameters of Protein Isolates from Grass Pea (Lathyrus sativus) Seeds. Food Science and Technology International, 2010, 16, 73-77.	1.1	3
27	The influence of tempeh fermentation and conventional cooking on antiâ€nutrient level and protein bioavailability (<i>in vitro</i> test) of grassâ€pea seeds. Journal of the Science of Food and Agriculture, 2008, 88, 2265-2270.	1.7	25
28	Antioxidant properties of extracts from fermented and cooked seeds of Polish cultivars of Lathyrus sativus. Food Chemistry, 2008, 109, 285-292.	4.2	56
29	The effect of phytic acid on oxidative stability of raw and cooked meat. Food Chemistry, 2007, 101, 1041-1045.	4.2	50
30	Physiological changes in the antioxidant system of broccoli flower buds senescing during short-term storage, related to temperature and packaging. Plant Science, 2003, 165, 1387-1395.	1.7	67
31	Some antioxidant and senescence parameters of broccoli as related to its developmental stages. Acta Physiologiae Plantarum, 2002, 24, 237-241.	1.0	7
32	Antioxidant ability of broccoli flower buds during short-term storage. Food Chemistry, 2001, 72, 219-222.	4.2	72