Wenjing Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660832/publications.pdf

Version: 2024-02-01

67 papers	1,650 citations	279798 23 h-index	39 g-index
67	67	67	2198
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nature Nanotechnology, 2016, 11, 426-431.	31.5	287
2	Ultralow Electrical Percolation in Graphene Aerogel/Epoxy Composites. Chemistry of Materials, 2016, 28, 6731-6741.	6.7	137
3	On the squeeze-film damping of micro-resonators in the free-molecule regime. Journal of Micromechanics and Microengineering, 2004, 14, 1726-1733.	2.6	118
4	Damage localization in plate-like structures using time-varying feature and one-dimensional convolutional neural network. Mechanical Systems and Signal Processing, 2021, 147, 107107.	8.0	91
5	Air damping in laterally oscillating microresonators: A numerical and experimental study. Journal of Microelectromechanical Systems, 2003, 12, 557-566.	2.5	76
6	A deep learning–based method for the design of microstructural materials. Structural and Multidisciplinary Optimization, 2020, 61, 1417-1438.	3.5	66
7	Multifunctional elastic metasurface design with topology optimization. Acta Materialia, 2020, 185, 382-399.	7.9	47
8	Theoretical and Numerical Studies of Noncontinuum Gas-Phase Heat Conduction in Micro/Nano Devices. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57, 203-226.	0.9	41
9	Frequencyâ€Coded Passive Multifunctional Elastic Metasurfaces. Advanced Functional Materials, 2020, 30, 2005285.	14.9	41
10	Multiple temperature kinetic model and its applications to micro-scale gas flows. Computers and Fluids, 2012, 67, 115-122.	2.5	39
11	A fast integral approach for drag force calculation due to oscillatory slip stokes flows. International Journal for Numerical Methods in Engineering, 2004, 60, 1535-1567.	2.8	37
12	Octant flux splitting information preservation DSMC method for thermally driven flows. Journal of Computational Physics, 2007, 226, 2044-2062.	3.8	34
13	Rectification of Mobile Leidenfrost Droplets by Planar Ratchets. Small, 2020, 16, e1901751.	10.0	32
14	Accelerating gradient-based topology optimization design with dual-model artificial neural networks. Structural and Multidisciplinary Optimization, 2021, 63, 1687-1707.	3.5	32
15	Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures. Physical Review E, 2011, 84, 016304.	2.1	31
16	Topology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterials. Computer Methods in Applied Mechanics and Engineering, 2019, 344, 819-836.	6.6	31
17	The impact of subcontinuum gas conduction on topography measurement sensitivity using heated atomic force microscope cantilevers. Physics of Fluids, 2005, 17, 100615.	4.0	29
18	Deep learning–based inverse method for layout design. Structural and Multidisciplinary Optimization, 2019, 60, 527-536.	3.5	29

#	Article	IF	CITATIONS
19	A new transformation technique for evaluating nearly singular integrals. Computational Mechanics, 2008, 42, 457-466.	4.0	28
20	Precorrected FFT accelerated BEM for largeâ€scale transient elastodynamic analysis using frequencyâ€domain approach. International Journal for Numerical Methods in Engineering, 2012, 90, 116-134.	2.8	28
21	Negative Knudsen force on heated microbeams. Physical Review E, 2011, 84, 056316.	2.1	27
22	Fast BEM solution for coupled 3D electrostatic and linear elastic problems. Engineering Analysis With Boundary Elements, 2004, 28, 1175-1186.	3.7	25
23	A Flux-Corrected Phase-Field Method for Surface Diffusion. Communications in Computational Physics, 2017, 22, 422-440.	1.7	25
24	A physical-based gas–surface interaction model for rarefied gas flow simulation. Journal of Computational Physics, 2018, 352, 105-122.	3.8	22
25	An accelerated surface discretization-based BEM approach for non-homogeneous linear problems in 3-D complex domains. International Journal for Numerical Methods in Engineering, 2005, 63, 1775-1795.	2.8	21
26	An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows. Communications in Computational Physics, 2014, 15, 246-264.	1.7	21
27	Performance evaluation of Maxwell and Cercignani-Lampis gas-wall interaction models in the modeling of thermally driven rarefied gas transport. Physical Review E, 2013, 88, 013009.	2.1	18
28	An adaptive artificial neural network-based generative design method for layout designs. International Journal of Heat and Mass Transfer, 2022, 184, 122313.	4.8	17
29	A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators. Microfluidics and Nanofluidics, 2010, 9, 809-818.	2.2	16
30	A Grid-based integral approach for quasilinear problems. Computational Mechanics, 2006, 38, 113-118.	4.0	13
31	On the convergence of the panel method for potential problems with non-smooth domains. Engineering Analysis With Boundary Elements, 2009, 33, 837-844.	3.7	13
32	On the modified Reynolds equation model for the prediction of squeeze-film gas damping in a low vacuum. Microfluidics and Nanofluidics, 2011, 11, 753-762.	2.2	13
33	A macromodel for squeeze-film air damping in the free-molecule regime. Physics of Fluids, 2010, 22, 012001.	4.0	12
34	Comparison of the convolution quadrature method and enhanced inverse FFT with application in elastodynamic boundary element method. Computational Mechanics, 2016, 57, 523-536.	4.0	12
35	Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method. Acta Materialia, 2022, 225, 117548.	7.9	12
36	Efficiency improvement of the frequency-domain BEM for rapid transient elastodynamic analysis. Computational Mechanics, 2013, 52, 903-912.	4.0	11

#	Article	IF	Citations
37	Numerical simulation of effective phase velocity and attenuation of shear elastic wave propagation in unidirectional composite materials. Ultrasonics, 2013, 53, 1200-1211.	3.9	11
38	Effective combination of modeling and experimental data with deep metric learning for guided wave-based damage localization in plates. Mechanical Systems and Signal Processing, 2022, 172, 108979.	8.0	10
39	Characterization of a Laterally Oscillating Microresonator Operating in the Nonlinear Region. Micromachines, 2016, 7, 132.	2.9	9
40	An interfering Monte Carlo method for partially coherent phonon transport in superlattices. International Journal of Heat and Mass Transfer, 2017, 107, 534-543.	4.8	9
41	Semi-supervised node classification via graph learning convolutional neural network. Applied Intelligence, 2022, 52, 12724-12736.	5.3	9
42	Wavelet BEM for largeâ€scale Stokes flows based on the direct integral formulation. International Journal for Numerical Methods in Engineering, 2011, 88, 693-714.	2.8	8
43	An efficient data generation method for ANN-based surrogate models. Structural and Multidisciplinary Optimization, 2022, 65, 1.	3.5	8
44	Shape-dependent orientation of thermophoretic forces in microsystems. Physical Review E, 2013, 88, 033020.	2.1	7
45	Theoretical Two-Dimensional Modeling of Gas Conduction Between Finite Parallel Plates in High Vacuum. Journal of Heat Transfer, 2012, 134, .	2.1	6
46	Investigation of wave interference effect in Si/Ge superlattices with interfering Monte Carlo method. International Journal of Heat and Mass Transfer, 2019, 128, 270-278.	4.8	6
47	A sub-μW micromachined magnetic compass. , 0, , .		4
48	An explicit formula for the coherent SH waves $\hat{a} \in \mathbb{N}$ attenuation coefficient in random porous materials with low porosities. Ultrasonics, 2015, 62, 27-34.	3.9	4
49	An interlayer/intralayer coupling mechanism for the thermal characteristics of polycrystalline few-layer graphene. Applied Physics Letters, 2019, 114, 021902.	3.3	4
50	Knudsen torque: A rotational mechanism driven by thermal force. Physical Review E, 2014, 90, 033009.	2.1	3
51	Complexity and accuracy of the grid-based direct-volume integration BEM for quasilinear problems. Engineering Analysis With Boundary Elements, 2015, 51, 44-51.	3.7	3
52	A High-Order Level-Set Method with Enhanced Stability for Curvature Driven Flows and Surface Diffusion Motion. Journal of Scientific Computing, 2016, 69, 1316-1345.	2.3	3
53	Grid-based volume integration for elasticity. Engineering Analysis With Boundary Elements, 2016, 64, 237-246.	3.7	3
54	Gas Flowin Nano-Channels: Thermal Transpirationmodelswith Application to a Si-Micromachinedknudsen Pump., 2007,,.		2

#	Article	IF	CITATIONS
55	Grid-based volume integration for elasticity: Traction boundary integral equation. Engineering Fracture Mechanics, 2017, 176, 74-82.	4.3	2
56	Boundary integral analysis for non-homogeneous, incompressible Stokes flows. Advances in Computational Mathematics, 2019, 45, 1729-1734.	1.6	2
57	Molecular Dynamics Simulation of Squeeze-Film Damping in the Free-Molecule Regime. , 2008, , .		1
58	Effect of oscillation mode on the free-molecule squeeze-film air damping. , 2010, , .		1
59	A new iterative integral formulation for semilinear equations based on the generalized quasilinearization theory. Engineering Analysis With Boundary Elements, 2011, 35, 179-184.	3.7	1
60	An efficient adaptive frequency sampling scheme for large-scale transient boundary element analysis. Computers and Structures, 2016, 167, 86-95.	4.4	1
61	An efficient grid-based direct-volume integration BEM for 3D geometrically nonlinear elasticity. Computational Mechanics, 2018, 62, 603-616.	4.0	1
62	Air damping of microbeam rsonators in a low vacuum. , 0, , .		0
63	Evaluating Gas Damping in MEMS Using Fast Integral Equation Solvers. Computational and Experimental Methods in Structures, 2008, , 153-181.	0.3	0
64	Fast BEM Analysis of Porous Solids. , 2010, , .		0
65	On the Maxwell gas-wall interaction model for micro/nano gas flows. , 2012, , .		0
66	Knudsen torque on heated micro beams. , 2014, , .		0
67	Numerical simulation of surface diffusion motion and its application in MEMS fabrication. Journal of Physics: Conference Series, 2019, 1303, 012024.	0.4	O