Pablo Sols-Fernndez

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7660672/pablo-solis-fernandez-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35	3,210 citations	22	38
papers		h-index	g-index
38 ext. papers	3,553 ext. citations	11.1 avg, IF	5.16 L-index

#	Paper	IF	Citations
35	Machine Learning Determination of the Twist Angle of Bilayer Graphene by Raman Spectroscopy: Implications for van der Waals Heterostructures. <i>ACS Applied Nano Materials</i> , 2022 , 5, 1356-1366	5.6	5
34	Coupling and Decoupling of Bilayer Graphene Monitored by Electron Energy Loss Spectroscopy. <i>Nano Letters</i> , 2021 ,	11.5	4
33	Pinning in a Contact and Noncontact Manner: Direct Observation of a Three-Phase Contact Line Using Graphene Liquid Cells. <i>Langmuir</i> , 2021 , 37, 12271-12277	4	O
32	High flux and adsorption based non-functionalized hexagonal boron nitride lamellar membrane for ultrafast water purification. <i>Chemical Engineering Journal</i> , 2021 , 420, 127721	14.7	6
31	Stacking Orientation-Dependent Photoluminescence Pathways in Artificially Stacked Bilayer WS2 Nanosheets Grown by Chemical Vapor Deposition: Implications for Spintronics and Valleytronics. <i>ACS Applied Nano Materials</i> , 2021 , 4, 3717-3724	5.6	9
30	Isothermal Growth and Stacking Evolution in Highly Uniform Bernal-Stacked Bilayer Graphene. <i>ACS Nano</i> , 2020 , 14, 6834-6844	16.7	17
29	Nanoscale Bubble Dynamics Induced by Damage of Graphene Liquid Cells. <i>ACS Omega</i> , 2020 , 5, 11180-1	13,1985	5
28	Chemically Tuned p- and n-Type WSe Monolayers with High Carrier Mobility for Advanced Electronics. <i>Advanced Materials</i> , 2019 , 31, e1903613	24	56
27	Vapor Phase Selective Growth of Two-Dimensional Perovskite/WS Heterostructures for Optoelectronic Applications. <i>ACS Applied Materials & Description (Materials & Description (Materials & Description (Materials & Description))</i> 11, 40503-40511	9.5	22
26	Hydrogen-Assisted Epitaxial Growth of Monolayer Tungsten Disulfide and Seamless Grain Stitching. <i>Chemistry of Materials</i> , 2018 , 30, 403-411	9.6	38
25	Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene. <i>Applied Surface Science</i> , 2017 , 408, 142-149	6.7	25
24	High Mobility WS2 Transistors Realized by Multilayer Graphene Electrodes and Application to High Responsivity Flexible Photodetectors. <i>Advanced Functional Materials</i> , 2017 , 27, 1703448	15.6	84
23	Synthesis, structure and applications of graphene-based 2D heterostructures. <i>Chemical Society Reviews</i> , 2017 , 46, 4572-4613	58.5	206
22	Spatially Controlled Nucleation of Single-Crystal Graphene on Cu Assisted by Stacked Ni. <i>ACS Nano</i> , 2016 , 10, 11196-11204	16.7	35
21	Gate-Tunable Dirac Point of Molecular Doped Graphene. ACS Nano, 2016 , 10, 2930-9	16.7	38
20	Visualization of Grain Structure and Boundaries of Polycrystalline Graphene and Two-Dimensional Materials by Epitaxial Growth of Transition Metal Dichalcogenides. <i>ACS Nano</i> , 2016 , 10, 3233-40	16.7	52
19	Tunable doping of graphene nanoribbon arrays by chemical functionalization. <i>Nanoscale</i> , 2015 , 7, 3572-	-8 ,0 7	15

(2008-2015)

18	Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & </i>	9.5	106
17	Synthesis of high-density arrays of graphene nanoribbons by anisotropic metal-assisted etching. <i>Carbon</i> , 2014 , 78, 339-346	10.4	13
16	Controlled generation of atomic vacancies in chemical vapor deposited graphene by microwave oxygen plasma. <i>Carbon</i> , 2014 , 79, 664-669	10.4	26
15	Identifying efficient natural bioreductants for the preparation of graphene and graphene-metal nanoparticle hybrids with enhanced catalytic activity from graphite oxide. <i>Carbon</i> , 2013 , 63, 30-44	10.4	38
14	Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene. <i>Advanced Materials</i> , 2013 , 25, 6562-8	24	31
13	Synthesis and characterization of graphenethesoporous silica nanoparticle hybrids. <i>Microporous and Mesoporous Materials</i> , 2012 , 160, 18-24	5.3	25
12	Preparation, characterization and fundamental studies on graphenes by liquid-phase processing of graphite. <i>Journal of Alloys and Compounds</i> , 2012 , 536, S450-S455	5.7	14
11	Chemical and microscopic analysis of graphene prepared by different reduction degrees of graphene oxide. <i>Journal of Alloys and Compounds</i> , 2012 , 536, S532-S537	5.7	64
10	Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. <i>Carbon</i> , 2012 , 50, 3184-3194	10.4	81
9	High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. <i>Carbon</i> , 2011 , 49, 1653-1662	10.4	403
8	Global and Local Oxidation Behavior of Reduced Graphene Oxide. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7956-7966	3.8	34
7	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010 , 114, 6426-6432	3.8	1065
6	A comparison between physically and chemically driven etching in the oxidation of graphite surfaces. <i>Journal of Colloid and Interface Science</i> , 2010 , 344, 451-9	9.3	31
5	Determining the thickness of chemically modified graphenes by scanning probe microscopy. <i>Carbon</i> , 2010 , 48, 2657-2660	10.4	37
4	Atomic Vacancy Engineering of Graphitic Surfaces: Controlling the Generation and Harnessing the Migration of the Single Vacancy. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 10249-10255	3.8	31
3	A Combined Experimental and Theoretical Investigation of Atomic-Scale Defects Produced on Graphite Surfaces by Dielectric Barrier Discharge Plasma Treatment. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18719-18729	3.8	11
2	Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. <i>Langmuir</i> , 2009 , 25, 5957-68	4	575
1	New atomic-scale features in graphite surfaces treated in a dielectric barrier discharge plasma. <i>Carbon</i> , 2008 , 46, 1364-1367	10.4	6