
Michael Ivan Lindinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660589/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A century of exercise physiology: key concepts in muscle cell volume regulation. European Journal of Applied Physiology, 2022, 122, 541-559.	1.2	3
2	A century of exercise physiology: key concepts in …. European Journal of Applied Physiology, 2022, 122, 1-4.	1.2	10
3	Critically assessing paradigms in applied exercise physiology. European Journal of Applied Physiology, 2022, 122, 1543-1544.	1.2	3
4	Heat adaptation in humans: extrapolating from basic to applied science. European Journal of Applied Physiology, 2021, 121, 1237-1238.	1.2	2
5	Regulation of muscle potassium: exercise performance, fatigue and health implications. European Journal of Applied Physiology, 2021, 121, 721-748.	1.2	37
6	Structured water: effects on animals. Journal of Animal Science, 2021, 99, .	0.2	15
7	Tracing oral Na ⁺ and K ⁺ in sweat during exercise and recovery in horses. Experimental Physiology, 2021, 106, 972-982.	0.9	4
8	Preâ€loading large volume oral electrolytes: tracing fluid and ion fluxes in horses during rest, exercise and recovery. Journal of Physiology, 2021, 599, 3879-3896.	1.3	4
9	In vitro Validation Assessment of a Fecal Occult Blood Protein Test for Horses. Journal of Equine Veterinary Science, 2021, 104, 103695.	0.4	1
10	Total Carbon Dioxide in Adult Standardbred and Thoroughbred Horses. Journal of Equine Veterinary Science, 2021, 106, 103730.	0.4	4
11	Changes in salivary electrolyte concentrations in midâ€distance trained sled dogs during 12 weeks of incremental conditioning. Physiological Reports, 2020, 8, e14493.	0.7	4
12	Heat adaptation in humans: the significance of controlled and regulated variables for experimental design and interpretation. European Journal of Applied Physiology, 2020, 120, 2583-2595.	1.2	10
13	Drinking a structured water product on markers of hydration, airway health and heart rate variability in Thoroughbred racehorses: a small-scale, clinical field trial. Veterinary Science Research, 2020, 2, .	0.1	2
14	Foundational insights into the estimation of whole-body metabolic rate. European Journal of Applied Physiology, 2018, 118, 867-874.	1.2	9
15	A time-course evaluation of inflammatory and oxidative markers following high-intensity exercise in horses: a pilot study. Journal of Applied Physiology, 2018, 124, 860-865.	1.2	11
16	Effects of a Novel Dietary Supplement on Indices of Muscle Injury and Articular GAG Release in Horses. Journal of Equine Veterinary Science, 2017, 48, 52-60.	0.4	4
17	Reduced Dental Plaque Formation in Dogs Drinking a Solution Containing Natural Antimicrobial Herbal Enzymes and Organic Matcha Green Tea. Scientifica, 2016, 2016, 1-8.	0.6	7
18	Reduced high intensity training distance had no effect on VLa4 but attenuated heart rate response in 2-3-year-old Standardbred horses. Acta Veterinaria Scandinavica, 2015, 57, 17.	0.5	17

#	Article	IF	CITATIONS
19	Acid-base physiology at rest, during exercise and in response to training. , 2014, , 855-879.		3
20	Seventy day safety assessment of an orally ingested, l-glutamine-containing oat and yeast supplement for horses. Regulatory Toxicology and Pharmacology, 2014, 70, 304-311.	1.3	3
21	Determining dehydration and its compartmentation in horses at rest and with exercise: a concise review and focus on multi-frequency bioelectrical impedance analysis. Comparative Exercise Physiology, 2014, 10, 3-11.	0.3	8
22	Pulmonary Gas Exchange and Acidâ€Base Balance During Exercise. , 2013, 3, 693-739.		76
23	Gastric emptying, intestinal absorption of electrolytes and exercise performance in electrolyteâ€supplemented horses. Experimental Physiology, 2013, 98, 193-206.	0.9	15
24	Inward Flux of Lactate- through Monocarboxylate Transporters Contributes to Regulatory Volume Increase in Mouse Muscle Fibres. PLoS ONE, 2013, 8, e84451.	1.1	7
25	Effects of Gas Exchange on Acidâ€Base Balance. , 2012, 2, 2203-2254.		32
26	Comments on Point:Counterpoint: Muscle lactate and H+ production do/do not have a 1:1 association in skeletal muscle. Journal of Applied Physiology, 2011, 110, 1493-1496.	1.2	6
27	Volume regulation in mammalian skeletal muscle: the role of sodium–potassium–chloride cotransporters during exposure to hypertonic solutions. Journal of Physiology, 2011, 589, 2887-2899.	1.3	24
28	Reply from M. I. Lindinger, M. Leung, K. E. Trajcevski and T. J. Hawke. Journal of Physiology, 2011, 589, 5557-5557.	1.3	0
29	Lactate: metabolic fuel or poison for racehorses?. Experimental Physiology, 2011, 96, 261-261.	0.9	4
30	Lactate: metabolic fuel or poison. Experimental Physiology, 2011, 96, 1099-1100.	0.9	0
31	Antioxidant, Anti-Inflammatory and Anticatabolic Potential of Rosmarinic Acid and High-Rosmarinic Acid Mint (Mentha Spicata) in Osteoarthritis. , 2011, , 451-462.		0
32	Antiarthritic Potential of Green-Lipped Mussel and Other Marine-Based Nutraceuticals. , 2011, , 443-450.		0
33	Nutritional aspects of post exercise skeletal muscle glycogen synthesis in horses: A comparative review. Equine Veterinary Journal, 2010, 42, 274-281.	0.9	27
34	Factors contributing to plasma TCO ₂ and acidâ€base state in Ontario Standardbred racehorses. Equine Veterinary Journal, 2010, 42, 592-600.	0.9	10
35	Evidence-Based Botanicals in North America. , 2010, , 195-211.		0
36	Effects of nutritionally induced metabolic acidosis with or without glutamine infusion on acid-base balance, plasma amino acids, and plasma nonesterified fatty acids in sheep1. Journal of Animal Science, 2009, 87, 1077-1084.	0.2	7

#	Article	IF	CITATIONS
37	Evaluation of inflammatory responses induced via intra-articular injection of interleukin-1 in horses receiving a dietary nutraceutical and assessment of the clinical effects of long-term nutraceutical administration. American Journal of Veterinary Research, 2009, 70, 848-861.	0.3	25
38	Fluid and electrolyte supplementation after prolonged moderate-intensity exercise enhances muscle glycogen resynthesis in Standardbred horses. Journal of Applied Physiology, 2009, 106, 91-100.	1.2	31
39	Oral acetate supplementation after prolonged moderate intensity exercise enhances early muscle glycogen resynthesis in horses. Experimental Physiology, 2009, 94, 888-898.	0.9	33
40	Low quality of evidence for glucosamineâ€based nutraceuticals in equine joint disease: Review of <i>in vivo</i> studies. Equine Veterinary Journal, 2009, 41, 706-712.	0.9	20
41	Do multiple ionic interactions contribute to skeletal muscle fatigue?. Journal of Physiology, 2008, 586, 4039-4054.	1.3	107
42	Simulated digest of a glucosamine-based equine nutraceutical modifies effect of IL-1 in a cartilage explant model of inflammation. Journal of Veterinary Pharmacology and Therapeutics, 2008, 31, 268-271.	0.6	4
43	Point:Counterpoint: Lactic acid is/is not the only physicochemical contributor to the acidosis of exercise. Journal of Applied Physiology, 2008, 105, 358-359.	1.2	20
44	Last Word on Point:Counterpoint: Lactate is/is not the only physicochemical contributor to the acidosis of exercise. Journal of Applied Physiology, 2008, 105, 369-369.	1.2	4
45	Effects of simulated digests of Biota orientalis and a dietary nutraceutical on interleukin-1– induced inflammatory responses in cartilage explants. American Journal of Veterinary Research, 2008, 69, 1560-1568.	0.3	10
46	Counterpoint: Lactic acid is not the only physicochemical contributor to the acidosis of exercise. Journal of Applied Physiology, 2008, 105, 359-361.	1.2	13
47	Muscle and blood acid–base physiology during exercise and in response to training. , 2008, , 350-381.		8
48	Origins of arterial and femoral venous acid–base responses during moderate-intensity bicycling exercise after glycogen depletion in men. Equine and Comparative Exercise Physiology, 2007, 4, 123-133.	0.4	1
49	Electrolyte supplementation after prolonged moderate-intensity exercise results in decreased plasma [TCO ₂] in Standardbreds. Equine and Comparative Exercise Physiology, 2007, 4, 149-158.	0.4	6
50	Effects of Prepartum Administration of a Monensin Controlled Release Capsule on Rumen pH, Feed Intake, and Milk Production of Transition Dairy Cows. Journal of Dairy Science, 2007, 90, 937-945.	1.4	45
51	The effect of oral sodium acetate administration on plasma acetate concentration and acid-base state in horses. Acta Veterinaria Scandinavica, 2007, 49, 38.	0.5	10
52	Effects of dietary strong acid anion challenge on regulation of acid-base balance in sheep1. Journal of Animal Science, 2007, 85, 2222-2229.	0.2	22
53	Antiâ€inflammatory and chondroprotective effects of nutraceuticals from Sasha's Blend in a cartilage explant model of inflammation. Molecular Nutrition and Food Research, 2007, 51, 1020-1030.	1.5	23
54	Combating muscle fatigue: extracellular lactic acidosis and catecholamines. Journal of Physiology, 2007, 581, 419-419.	1.3	5

#	Article	IF	CITATIONS
55	Differential anti-inflammatory and chondroprotective effects of simulated digests of indomethacin and an herbal composite (MobilityTM) in a cartilage explant model of articular inflammation. Journal of Veterinary Pharmacology and Therapeutics, 2007, 30, 523-533.	0.6	11
56	Frusemide results in an extracellular to intracellular fluid shift in horses. Equine Veterinary Journal, 2006, 38, 245-253.	0.9	10
57	Hydration of exercised Standardbred racehorses assessed noninvasively using multiâ€frequency bioelectrical impedance analysis. Equine Veterinary Journal, 2006, 38, 285-290.	0.9	10
58	Lactic acid accumulation is an advantage/disadvantage during muscle activity. Journal of Applied Physiology, 2006, 100, 2100-2102.	1.2	13
59	Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs1. Journal of Animal Science, 2006, 84, 447-455.	0.2	86
60	Daily variation in plasma electrolyte and acid–base status in fasted horses over a 25 h period of rest. Equine and Comparative Exercise Physiology, 2006, 3, 29-36.	0.4	4
61	Hematological and acid-base changes in men during prolonged exercise with and without sodium-lactate infusion. Journal of Applied Physiology, 2005, 98, 856-865.	1.2	35
62	Time course and magnitude of fluid and electrolyte shifts during recovery from high-intensity exercise in Standardbred racehorses. Equine and Comparative Exercise Physiology, 2005, 2, 77-87.	0.4	17
63	Intracellular [H+]: a determinant of cell volume in skeletal muscle. Journal of Physiology, 2005, 563, 643-643.	1.3	3
64	Determinants of surface membrane and transverse-tubular excitability in skeletal muscle: implications for high-intensity exercise. Equine and Comparative Exercise Physiology, 2005, 2, 209-217.	0.4	6
65	Physicochemical analysis of acid–base status during recovery from high-intensity exercise in Standardbred racehorses. Equine and Comparative Exercise Physiology, 2005, 2, 119-127.	0.4	10
66	Applying physicochemical principles to skeletal muscle acid-base status. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R891-R894.	0.9	64
67	Association of maximum voluntary dietary intake of freeze-dried garlic with Heinz body anemia in horses. American Journal of Veterinary Research, 2005, 66, 457-465.	0.3	39
68	Cyclical plasma electrolyte and acid–base responses to meal feeding in horses over a 24-h period. Equine and Comparative Exercise Physiology, 2005, 2, 159-169.	0.4	9
69	An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes. Biological Procedures Online, 2005, 7, 31-40.	1.4	7
70	Time course and magnitude of changes in total body water, extracellular fluid volume, intracellular fluid volume and plasma volume during submaximal exercise and recovery in horses. Equine and Comparative Exercise Physiology, 2004, 1, 131-139.	0.4	10
71	The Effects of Subacute Ruminal Acidosis on Sodium Bicarbonate-Supplemented Water Intake for Lactating Dairy Cows. Journal of Dairy Science, 2004, 87, 2248-2253.	1.4	27
72	Chronic Metabolic Acidosis Increases mRNA Levels for Components of the Ubiquitin-Mediated Proteolytic Pathway in Skeletal Muscle of Dairy Cows. Journal of Nutrition, 2004, 134, 558-561.	1.3	16

#	Article	IF	CITATIONS
73	Exercise: a paradigm for multiâ€system control of acid–base state. Journal of Physiology, 2003, 550, 334-334.	1.3	5
74	Exerciseâ€Induced Changes in Plasma Composition Increase Erythrocyte Na + ,K + â€ATPase, but not Na + –K + –2Cl â^' Cotransporter, Activity to Stimulate net and Unidirectional K + Transport in Humans. Journal of Physiology, 2003, 553, 987-997.	1.3	12
75	Short Communication: Effects of Subacute Ruminal Acidosis on Free-Choice Intake of Sodium Bicarbonate in Lactating Dairy Cows. Journal of Dairy Science, 2003, 86, 954-957.	1.4	21
76	Riding the Tides: K+ Concentration and Volume Regulation by Muscle Na+-K+-2Clâ^' Cotransport Activity. Physiology, 2003, 18, 196-200.	1.6	26
77	K ⁺ Transport and Volume Regulatory Response by NKCC in Resting Rat Hindlimb Skeletal Muscle. Cellular Physiology and Biochemistry, 2002, 12, 279-292.	1.1	35
78	Effects of a Subacute Ruminal Acidosis Model on the Diet Selection of Dairy Cows. Journal of Dairy Science, 2002, 85, 3304-3313.	1.4	172
79	Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. Journal of Physiology, 2002, 544, 963-975.	1.3	172
80	An integrative, in situ approach to examining K+ flux in resting skeletal muscle. Canadian Journal of Physiology and Pharmacology, 2001, 79, 996-1006.	0.7	22
81	Ouabain stimulates unidirectional and net potassium efflux in resting mammalian skeletal muscle. Canadian Journal of Physiology and Pharmacology, 2001, 79, 932-941.	0.7	6
82	An integrative, in situ approach to examining K ⁺ flux in resting skeletal muscle. Canadian Journal of Physiology and Pharmacology, 2001, 79, 996-1006.	0.7	10
83	Heat storage in horses during submaximal exercise before and after humid heat acclimation. Journal of Applied Physiology, 2000, 89, 2283-2293.	1.2	52
84	Total body water and ECFV measured using bioelectrical impedance analysis and indicator dilution in horses. Journal of Applied Physiology, 2000, 89, 663-671.	1.2	50
85	NaHCO ₃ and KHCO ₃ ingestion rapidly increases renal electrolyte excretion in humans. Journal of Applied Physiology, 2000, 88, 540-550.	1.2	53
86	Heat acclimation improves regulation of plasma volume and plasma Na ⁺ content during exercise in horses. Journal of Applied Physiology, 2000, 88, 1006-1013.	1.2	36
87	Role of skeletal muscle in plasma ion and acid-base regulation after NaHCO3 and KHCO3 loading in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R32-R43.	0.9	20
88	Equine sweating responses to submaximal exercise during 21 days of heat acclimation. Journal of Applied Physiology, 1999, 87, 1843-1851.	1.2	41
89	Exercise-induced stimulation of K ⁺ transport in human erythrocytes. Journal of Applied Physiology, 1999, 87, 2157-2167.	1.2	12
90	K+ transport in resting rat hind-limb skeletal muscle in response to paraxanthine, a caffeine metabolite. Canadian Journal of Physiology and Pharmacology, 1999, 77, 835-843.	0.7	13

Michael Ivan Lindinger

#	Article	IF	CITATIONS
91	Thermionic electron emission of small tungsten cluster anions on the milliseconds time scale. Journal of Chemical Physics, 1999, 110, 8754-8766.	1.2	28
92	Increased flow rate and papaverine increase K+ exchange in perfused rat hind-limb skeletal muscle. Canadian Journal of Physiology and Pharmacology, 1999, 77, 536-543.	0.7	7
93	Exercise in the Heat: Thermoregulatory Limitations to Performance in Humans and Horses. Applied Physiology, Nutrition, and Metabolism, 1999, 24, 152-163.	1.7	47
94	Increased flow rate and papaverine increase K ⁺ exchange in perfused rat hind-limb skeletal muscle. Canadian Journal of Physiology and Pharmacology, 1999, 77, 536-543.	0.7	2
95	Time-resolved photofragmentation of stored silver clustersAgn+(n=8–21). Physical Review A, 1998, 57, 2786-2793.	1.0	68
96	Sarcoplasmic reticulum responses to repeated sprints are affected by conditioning of horses Journal of Animal Science, 1998, 76, 3065.	0.2	20
97	Distribution of lactate and other ions in inactive skeletal muscle: influence of hyperkalemic lactacidosis. Canadian Journal of Physiology and Pharmacology, 1997, 75, 1375-1386.	0.7	6
98	Time resolved photofragmentation of Au \$_{n}^{+}\$ and Ag \$_{n}^{+}\$ clusters (n = 9, 21). Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1997, 40, 347-350.	1.0	26
99	Metabolite accumulation increases adenine nucleotide degradation and decreases glycogenolysis in ischaemic rat skeletal muscle. Acta Physiologica Scandinavica, 1997, 161, 203-210.	2.3	10
100	L-type Ca2+ channel and Na+/Ca2+ exchange inhibitors reduce Ca2+ accumulation in reperfused skeletal muscle. Journal of Applied Physiology, 1996, 80, 1263-1269.	1.2	8
101	Photo fragmentation of metal clusters stored in a penning trap. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1996, 38, 51-58.	1.0	34
102	Stimulation of Na+ , K+ -pump activity in skeletal muscle by methylxanthines: evidence and proposed mechanisms. Acta Physiologica Scandinavica, 1996, 156, 347-353.	2.3	26
103	Time resolved photofragmentation of Au+15 clusters. Chemical Physics Letters, 1996, 256, 77-82.	1.2	29
104	DELAYED ELECTRON EMISSION OF NEGATIVELY CHARGED TUNGSTEN CLUSTERS. Surface Review and Letters, 1996, 03, 541-544.	0.5	20
105	Adaptations to daily exercise in hot and humid ambient conditions in trained Thoroughbred horses. Equine Veterinary Journal, 1996, 28, 63-68.	0.9	17
106	Trapped metal cluster ions. Physica Scripta, 1995, T59, 236-243.	1.2	51
107	Photofragmentation of stored cluster ions. AIP Conference Proceedings, 1995, , .	0.3	0
108	K+ and Lac- distribution in humans during and after high-intensity exercise: role in muscle fatigue attenuation?. Journal of Applied Physiology, 1995, 78, 765-777.	1.2	112

Michael Ivan Lindinger

#	Article	IF	CITATIONS
109	A Penning trap mass spectrometer for the study of cluster ions. Review of Scientific Instruments, 1995, 66, 4902-4910.	0.6	68
110	Potassium regulation during exercise and recovery in humans: Implications for skeletal and cardiac muscle. Journal of Molecular and Cellular Cardiology, 1995, 27, 1011-1022.	0.9	106
111	Origins of [H ⁺] Changes in Exercising Skeletal Muscle. Applied Physiology, Nutrition, and Metabolism, 1995, 20, 357-368.	1.7	32
112	Heat stress and acclimation in the performance horse: where we are and where we are going. Equine Veterinary Education, 1995, 7, 256-262.	0.3	6
113	Preparing for and competing in the heat: the human perspective. Equine Veterinary Journal, 1995, 27, 8-15.	0.9	6
114	Water and ion losses during the cross ountry phase of eventing. Equine Veterinary Journal, 1995, 27, 111-119.	0.9	17
115	Thermal and cardiorespiratory responses of horses to submaximal exercise under hot and humid conditions. Equine Veterinary Journal, 1995, 27, 125-132.	0.9	38
116	Plasma volume and ions during exercise in cool, dry; hot, dry; and hot, humid conditions. Equine Veterinary Journal, 1995, 27, 133-139.	0.9	14
117	Sweating rate and sweat composition during exercise and recovery in ambient heat and humidity. Equine Veterinary Journal, 1995, 27, 153-157.	0.9	39
118	Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1994, 266, R1896-R1906.	0.9	35
119	External-ion accumulation in a Penning trap with quadrupole excitation assisted buffer gas cooling. International Journal of Mass Spectrometry and Ion Processes, 1994, 132, 181-191.	1.9	63
120	Collision induced dissociation of stored gold cluster ions. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1994, 30, 341-348.	1.0	42
121	Fragmentation of gold clusters stored in a penning trap. Rapid Communications in Mass Spectrometry, 1994, 8, 401-402.	0.7	10
122	Fragmentation pattern of gold clusters collided with xenon atoms. Computational Materials Science, 1994, 2, 633-637.	1.4	15
123	Auâ€induced decomposition of N ₂ O. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 1608-1612.	0.9	16
124	Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. American Journal of Physiology - Endocrinology and Metabolism, 1993, 265, E752-E760.	1.8	106
125	Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. Journal of Applied Physiology, 1993, 74, 1149-1155.	1.2	103
126	Energy metabolism and adenine nucleotide degradation in twitch-stimulated rat hindlimb during ischemia-reperfusion. American Journal of Physiology - Endocrinology and Metabolism, 1993, 264, E655-E661.	1.8	9

#	Article	IF	CITATIONS
127	Erythrocyte ion regulation across inactive muscle during leg exercise. Canadian Journal of Physiology and Pharmacology, 1992, 70, 1625-1633.	0.7	20
128	Blood ion regulation during repeated maximal exercise and recovery in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1992, 262, R126-R136.	0.9	83
129	The roles of ion fluxes in skeletal muscle fatigue. Canadian Journal of Physiology and Pharmacology, 1991, 69, 246-253.	0.7	74
130	Potassium Regulation during Exercise and Recovery. Sports Medicine, 1991, 11, 382-401.	3.1	88
131	Lactate metabolism in inactive skeletal muscle during lactacidosis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1991, 261, R98-R105.	0.9	11
132	Cluster isobars for high-precision mass spectrometry. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 20, 441-443.	1.0	13
133	Contribution of erythrocytes to the control of the electrolyte changes of exercise. Canadian Journal of Physiology and Pharmacology, 1991, 69, 984-993.	0.7	50
134	Quadrupole-detection FT-ICR mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 1990, 98, 25-33.	1.9	62
135	Role of nonworking muscle on blood metabolites and ions with intense intermittent exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1990, 258, R1486-R1494.	0.9	40
136	Parametricâ€modeâ€excitation/dipoleâ€modeâ€detection Fourierâ€transform–ionâ€cyclotronâ€resonance spectrometry. Review of Scientific Instruments, 1990, 61, 1055-1058.	0.6	36
137	Effects of alkalosis on muscle ions at rest and with intense exercise. Canadian Journal of Physiology and Pharmacology, 1990, 68, 820-829.	0.7	38
138	Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. Journal of Applied Physiology, 1989, 66, 8-13.	1.2	233
139	Renal responses to exercise-induced lactic acidosis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1989, 257, R102-R108.	0.9	12
140	Role of lungs and inactive muscle in acid-base control after maximal exercise. Journal of Applied Physiology, 1988, 65, 2090-2096.	1.2	71
141	Ion fluxes during tetanic stimulation in isolated perfused rat hindlimb. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1988, 254, R117-R126.	0.9	26
142	Factors influencing hydrogen ion concentration in muscle after intense exercise. Journal of Applied Physiology, 1988, 65, 2080-2089.	1.2	156
143	Effects of intense swimming and tetanic electrical stimulation on skeletal muscle ions and metabolites. Journal of Applied Physiology, 1987, 63, 2331-2339.	1.2	51
144	Intracellular ion content of skeletal muscle measured by instrumental neutron activation analysis. Journal of Applied Physiology, 1987, 63, 426-433.	1.2	32

#	Article	IF	CITATIONS
145	Acid-Base and Ion Regulation in the Bullfrog Rana catesbeiana during and following Severe Hypoxia. Physiological Zoology, 1987, 60, 424-436.	1.5	6

146 Cutaneous and renal responses to intravascular infusions of HCl and NH4Cl in the bullfrog (Rana) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

147	Effects of alkalosis on skeletal muscle metabolism and performance during exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1986, 251, R833-R839.	0.9	32
148	Acid–base and respiratory properties of a buffered bovine erythrocyte perfusion medium. Canadian Journal of Physiology and Pharmacology, 1986, 64, 550-555.	0.7	14
149	Fine structure of the abdominal epidermis of the adult mudpuppy, Necturus maculosus (Rafinesque). Cell and Tissue Research, 1984, 238, 395-405.	1.5	12