Palaniappan Subramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660230/publications.pdf

Version: 2024-02-01

63 papers 1,922 citations

257357 24 h-index 265120 42 g-index

63 all docs

63 does citations

63 times ranked

2908 citing authors

#	Article	IF	Citations
1	Critical Role of Phosphorus in Hollow Structures Cobaltâ€Based Phosphides as Bifunctional Catalysts for Water Splitting. Small, 2022, 18, e2103561.	5.2	54
2	Reduced graphene oxide–based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Analytical and Bioanalytical Chemistry, 2021, 413, 779-787.	1.9	62
3	MnOOH nanoparticles integrated nitrogen doped porous nanosheet-like carbon network as a non-noble catalyst for electro-oxidation of sodium borohydride. International Journal of Hydrogen Energy, 2021, 46, 9380-9393.	3.8	3
4	αâ€Co(OH) ₂ Thinâ€Layered Cactusâ€Like Nanostructures Wrapped Ni ₃ S ₂ Nanowires: A Robust and Potential Catalyst for Electroâ€oxidation of Hydrazine. ChemElectroChem, 2021, 8, 937-947.	1.7	7
5	Rational construction of hierarchical Ni(OH)2–NiS in-plane edge hybrid nanosheet structures on the carbon cloth as a robust catalyst for electro-oxidation of urea. Journal of Alloys and Compounds, 2021, 870, 159486.	2.8	17
6	Co, Fe-ions intercalated Ni(OH)2 network-like nanosheet arrays as highly efficient non-noble catalyst for electro-oxidation of urea. International Journal of Hydrogen Energy, 2021, 46, 34318-34332.	3.8	15
7	Sulfur-modified nickel selenide as an efficient electrocatalyst for the oxygen evolution reaction. Journal of Energy Chemistry, 2021, 62, 198-203.	7.1	35
8	Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine. Nanomaterials, 2021, 11, 2857.	1.9	3
9	Nickel-phosphate pompon flowers nanostructured network enables the sensitive detection of microRNA. Talanta, 2020, 209, 120511.	2.9	11
10	Pdâ€Decorated Tungsten as Ptâ€Free Bimetallic Catalysts for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Israel Journal of Chemistry, 2020, 60, 563-569.	1.0	8
11	Electrochemical Oxidation of Glycine with Bimetallic Nickelâ^'Manganese Oxide Catalysts. ChemElectroChem, 2020, 7, 561-568.	1.7	12
12	Nitrogen-doped mesoporous carbon nanosheet network entrapped nickel nanoparticles as an efficient catalyst for electro-oxidation of glycerol. International Journal of Hydrogen Energy, 2020, 45, 28821-28835.	3.8	14
13	Plasmon-enhanced electrocatalytic oxygen reduction in alkaline media on gold nanohole electrodes. Journal of Materials Chemistry A, 2020, 8, 10395-10401.	5.2	12
14	MnO2 cacti-like nanostructured platform powers the enhanced electrochemical immunobiosensing of cortisol. Sensors and Actuators B: Chemical, 2020, 317, 128134.	4.0	16
15	Electrochemical deposition of metal–organic framework films and their applications. Journal of Materials Chemistry A, 2020, 8, 7569-7587.	5.2	126
16	Enhanced electrocatalytic hydrogen evolution on a plasmonic electrode: the importance of the Ti/TiO2 adhesion layer. Journal of Materials Chemistry A, 2020, 8, 13980-13986.	5.2	10
17	In-situ formation of Ni (oxy)hydroxide on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 8490-8496.	3.8	31
18	Grain boundaries of Co(OH)2-Ni-Cu nanosheets on the cotton fabric substrate for stable and efficient electro-oxidation of hydrazine. International Journal of Hydrogen Energy, 2019, 44, 24591-24603.	3.8	16

#	Article	IF	CITATIONS
19	A template-directed bifunctional NiS _x /nitrogen-doped mesoporous carbon electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 19889-19897.	5.2	43
20	Hierarchical core–shell structured Ni ₃ S ₂ /NiMoO ₄ nanowires: a high-performance and reusable electrochemical sensor for glucose detection. Analyst, The, 2019, 144, 4925-4934.	1.7	24
21	Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. Materials, 2019, 12, 43.	1.3	17
22	Catalytic current mapping of oxygen reduction on isolated Pt particles by atomic force microscopy-scanning electrochemical microscopy. Applied Catalysis B: Environmental, 2019, 256, 117843.	10.8	14
23	Cobalt Oxide Porous Nanocubes-Based Electrochemical Immunobiosensing of Hepatitis B Virus DNA in Blood Serum and Urine Samples. Analytical Chemistry, 2019, 91, 5824-5833.	3.2	44
24	Ternary nickel cobalt manganese spinel oxide nanoparticles as heterogeneous electrocatalysts for oxygen evolution and oxygen reduction reaction. Materials Chemistry and Physics, 2019, 229, 190-196.	2.0	31
25	Simultaneous Mapping of Oxygen Reduction Activity and Hydrogen Peroxide Generation on Electrocatalytic Surfaces. ChemSusChem, 2019, 12, 2708-2714.	3.6	11
26	Titanium hydride—a stable support for Pt catalysts in oxygen reduction reaction. Journal of Solid State Electrochemistry, 2018, 22, 2049-2058.	1.2	3
27	Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale, 2018, 10, 6962-6970.	2.8	20
28	Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection: Application to human papillomavirus (HPV). Sensors and Actuators B: Chemical, 2018, 262, 991-1000.	4.0	82
29	Enhanced Urea Activity of Oxidation on Nickelâ€Deposited Tin Dendrites. ChemElectroChem, 2017, 4, 1037-1043.	1.7	36
30	Atomic Force Microscopic and Raman Investigation of Boron-Doped Diamond Nanowire Electrodes and Their Activity toward Oxygen Reduction. Journal of Physical Chemistry C, 2017, 121, 3397-3403.	1.5	13
31	Unraveling the Oxygenâ€Reduction Sites in Graphiticâ€Carbon Co–N–Câ€Type Electrocatalysts Prepared by Singleâ€Precursor Pyrolysis. ChemCatChem, 2017, 9, 1969-1978.	1.8	18
32	Electrochemical Oxygen Reduction Activity of Metal Embedded Nitrogen Doped Carbon Nanostructures Derived from Pyrolysis of Nitrogen-Rich Guanidinium Salt. Journal of the Electrochemical Society, 2017, 164, F781-F789.	1.3	8
33	Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12176-12185.	4.0	130
34	Green Synthesis of Reduced Graphene Oxide-Silver Nanoparticles Using Environmentally Friendly L-arginine for H ₂ O ₂ Detection. ECS Journal of Solid State Science and Technology, 2016, 5, M3060-M3066.	0.9	16
35	Insights on the Electrochemical Atomic Force Microscopic Catalytic Oxygen Reduction on Tip Guided Platinum Particle Deposits. Electrochimica Acta, 2016, 217, 100-107.	2.6	4
36	Vertically Aligned Nitrogen-Doped Carbon Nanotube Carpet Electrodes: Highly Sensitive Interfaces for the Analysis of Serum from Patients with Inflammatory Bowel Disease. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9600-9609.	4.0	16

#	Article	IF	Citations
37	Electrochemical Oxygen Reduction Activity of Cobalt-Nitrogen-Carbon Composite Catalyst Prepared by Single Precursor Pyrolysis under Autogenic Pressure. Journal of the Electrochemical Society, 2016, 163, F428-F436.	1.3	13
38	The Synthesis of Metallic \hat{l}^2 -Sn Nanostructures for Use as a Novel Pt Catalyst Support and Evaluation of Their Activity Toward Methanol Electrooxidation. Electrocatalysis, 2015, 6, 554-562.	1.5	9
39	Electrocatalytic activity of nitrogen plasma treated vertically aligned carbon nanotube carpets towards oxygen reduction reaction. Electrochemistry Communications, 2014, 49, 42-46.	2.3	23
40	Carbohydrate–Lectin Interaction on Graphene-Coated Surface Plasmon Resonance (SPR) Interfaces. Plasmonics, 2014, 9, 677-683.	1.8	34
41	Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon, 2014, 68, 175-184.	5 . 4	69
42	Graphene-Coated Surface Plasmon Resonance Interfaces for Studying the Interactions between Bacteria and Surfaces. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5422-5431.	4.0	65
43	Preparation of reduced graphene oxide–Ni(OH) ₂ composites by electrophoretic deposition: application for non-enzymatic glucose sensing. Journal of Materials Chemistry A, 2014, 2, 5525-5533.	5.2	128
44	Insulin loaded iron magnetic nanoparticle–graphene oxide composites: synthesis, characterization and application for in vivo delivery of insulin. RSC Advances, 2014, 4, 865-875.	1.7	33
45	Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides. Analyst, The, 2014, 139, 4343.	1.7	8
46	An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles. Analyst, The, 2014, 139, 1726.	1.7	19
47	Enhancing LSPR Sensitivity of Au Gratings through Graphene Coupling to Au Film. Plasmonics, 2014, 9, 507-512.	1.8	44
48	Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochemistry Communications, 2013, 34, 286-290.	2.3	60
49	Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosensors and Bioelectronics, 2013, 50, 239-243.	5.3	125
50	Peroxynitrite activity of hemin-functionalized reduced graphene oxide. Analyst, The, 2013, 138, 4345.	1.7	42
51	Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowire electrodes. Electrochemistry Communications, 2013, 35, 84-87.	2.3	67
52	Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochimica Acta, 2013, 110, 4-8.	2.6	20
53	Mechanochemical synthesis and characterization of poly(2,5â€dimethoxy aniline) salts. Journal of Applied Polymer Science, 2012, 124, 4281-4288.	1.3	8
54	Localized surface plasmon resonance interfaces coated with poly[3-(pyrrolyl)carboxylic acid] for histidine-tagged peptide sensing. Analyst, The, 2011, 136, 4211.	1.7	5

#	Article	IF	CITATIONS
55	Template-free mechanochemical route to prepare crystalline and electroactive polydiphenylamine nanostructures. Materials Chemistry and Physics, 2011, 129, 948-954.	2.0	6
56	Electrochemical synthesis and characterization of poly(aniline-co-1-amino-9,10-anthraquinone), a nanosized conducting copolymer. Journal of Polymer Research, 2011, 18, 311-317.	1.2	8
57	Preparation of a functional nanofibrous polymer membrane incorporated with poly(2-aminothio) Tj ETQq $1\ 1\ 0.78$	34314 rgBT 1.1	19verlock 1
58	Mechanochemical preparation of polydiphenylamine and its electrochemical performance in hybrid supercapacitors. Electrochimica Acta, 2011, 56, 6123-6130.	2.6	19
59	Large-Scale Preparation of Polyaniline Nanospheres Anchored with Thiol-Stabilized Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 358-362.	0.9	0
60	Rapid synthesis of polypyrrole nanospheres by greener mechanochemical route. Materials Chemistry and Physics, 2010, 122, 15-17.	2.0	28
61	Electropolymerisation and characterisation of nanosize conducting poly[(<i>o</i> ôôôôôôôô	1.6	5
62	Enhanced Sensing of Carbendazim, a Fungicide on Functionalized Multiwalled Carbon Nanotube Modified Glassy Carbon Electrode and Its Determination in Real Samples. Analytical Letters, 2010, 43, 1457-1470.	1.0	26
63	Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode. Talanta, 2008, 76, 1022-1028.	2.9	69