
## Palaniappan Subramanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660230/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 12176-12185.                                     | 4.0 | 130       |
| 2  | Preparation of reduced graphene oxide–Ni(OH) <sub>2</sub> composites by electrophoretic<br>deposition: application for non-enzymatic glucose sensing. Journal of Materials Chemistry A, 2014, 2,<br>5525-5533. | 5.2 | 128       |
| 3  | Electrochemical deposition of metal–organic framework films and their applications. Journal of<br>Materials Chemistry A, 2020, 8, 7569-7587.                                                                   | 5.2 | 126       |
| 4  | Lysozyme detection on aptamer functionalized graphene-coated SPR interfaces. Biosensors and Bioelectronics, 2013, 50, 239-243.                                                                                 | 5.3 | 125       |
| 5  | Nucleic aptamer modified porous reduced graphene oxide/MoS2 based electrodes for viral detection:<br>Application to human papillomavirus (HPV). Sensors and Actuators B: Chemical, 2018, 262, 991-1000.        | 4.0 | 82        |
| 6  | Electroanalysis of some common pesticides using conducting polymer/multiwalled carbon nanotubes modified glassy carbon electrode. Talanta, 2008, 76, 1022-1028.                                                | 2.9 | 69        |
| 7  | Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes.<br>Carbon, 2014, 68, 175-184.                                                                                  | 5.4 | 69        |
| 8  | Simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowire electrodes. Electrochemistry Communications, 2013, 35, 84-87.                                 | 2.3 | 67        |
| 9  | Graphene-Coated Surface Plasmon Resonance Interfaces for Studying the Interactions between Bacteria and Surfaces. ACS Applied Materials & amp; Interfaces, 2014, 6, 5422-5431.                                 | 4.0 | 65        |
| 10 | Reduced graphene oxide–based field effect transistors for the detection of E7 protein of human papillomavirus in saliva. Analytical and Bioanalytical Chemistry, 2021, 413, 779-787.                           | 1.9 | 62        |
| 11 | Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochemistry Communications, 2013, 34, 286-290.                                                                               | 2.3 | 60        |
| 12 | Critical Role of Phosphorus in Hollow Structures Cobaltâ€Based Phosphides as Bifunctional Catalysts<br>for Water Splitting. Small, 2022, 18, e2103561.                                                         | 5.2 | 54        |
| 13 | Enhancing LSPR Sensitivity of Au Gratings through Graphene Coupling to Au Film. Plasmonics, 2014, 9, 507-512.                                                                                                  | 1.8 | 44        |
| 14 | Cobalt Oxide Porous Nanocubes-Based Electrochemical Immunobiosensing of Hepatitis B Virus DNA in<br>Blood Serum and Urine Samples. Analytical Chemistry, 2019, 91, 5824-5833.                                  | 3.2 | 44        |
| 15 | A template-directed bifunctional NiS <sub>x</sub> /nitrogen-doped mesoporous carbon electrocatalyst<br>for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 19889-19897.              | 5.2 | 43        |
| 16 | Peroxynitrite activity of hemin-functionalized reduced graphene oxide. Analyst, The, 2013, 138, 4345.                                                                                                          | 1.7 | 42        |
| 17 | Enhanced Urea Activity of Oxidation on Nickelâ€Đeposited Tin Dendrites. ChemElectroChem, 2017, 4, 1037-1043.                                                                                                   | 1.7 | 36        |
| 18 | Sulfur-modified nickel selenide as an efficient electrocatalyst for the oxygen evolution reaction.<br>Journal of Energy Chemistry, 2021, 62, 198-203.                                                          | 7.1 | 35        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Carbohydrate–Lectin Interaction on Graphene-Coated Surface Plasmon Resonance (SPR) Interfaces.<br>Plasmonics, 2014, 9, 677-683.                                                                                                      | 1.8 | 34        |
| 20 | Insulin loaded iron magnetic nanoparticle–graphene oxide composites: synthesis, characterization<br>and application for in vivo delivery of insulin. RSC Advances, 2014, 4, 865-875.                                                 | 1.7 | 33        |
| 21 | Ternary nickel cobalt manganese spinel oxide nanoparticles as heterogeneous electrocatalysts for oxygen evolution and oxygen reduction reaction. Materials Chemistry and Physics, 2019, 229, 190-196.                                | 2.0 | 31        |
| 22 | In-situ formation of Ni (oxy)hydroxide on Ni foam as an efficient electrocatalyst for oxygen evolution<br>reaction. International Journal of Hydrogen Energy, 2020, 45, 8490-8496.                                                   | 3.8 | 31        |
| 23 | Rapid synthesis of polypyrrole nanospheres by greener mechanochemical route. Materials Chemistry and Physics, 2010, 122, 15-17.                                                                                                      | 2.0 | 28        |
| 24 | Enhanced Sensing of Carbendazim, a Fungicide on Functionalized Multiwalled Carbon Nanotube<br>Modified Glassy Carbon Electrode and Its Determination in Real Samples. Analytical Letters, 2010, 43,<br>1457-1470.                    | 1.0 | 26        |
| 25 | Hierarchical core–shell structured Ni <sub>3</sub> S <sub>2</sub> /NiMoO <sub>4</sub> nanowires: a<br>high-performance and reusable electrochemical sensor for glucose detection. Analyst, The, 2019, 144,<br>4925-4934.             | 1.7 | 24        |
| 26 | Electrocatalytic activity of nitrogen plasma treated vertically aligned carbon nanotube carpets towards oxygen reduction reaction. Electrochemistry Communications, 2014, 49, 42-46.                                                 | 2.3 | 23        |
| 27 | Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochimica Acta, 2013, 110, 4-8.                                                    | 2.6 | 20        |
| 28 | Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale, 2018, 10, 6962-6970.                                                                       | 2.8 | 20        |
| 29 | Mechanochemical preparation of polydiphenylamine and its electrochemical performance in hybrid supercapacitors. Electrochimica Acta, 2011, 56, 6123-6130.                                                                            | 2.6 | 19        |
| 30 | An impedimetric immunosensor based on diamond nanowires decorated with nickel nanoparticles.<br>Analyst, The, 2014, 139, 1726.                                                                                                       | 1.7 | 19        |
| 31 | Unraveling the Oxygenâ€Reduction Sites in Graphiticâ€Carbon Co–N–Câ€Type Electrocatalysts Prepared by<br>Singleâ€Precursor Pyrolysis. ChemCatChem, 2017, 9, 1969-1978.                                                               | 1.8 | 18        |
| 32 | Plasmon-Induced Electrocatalysis with Multi-Component Nanostructures. Materials, 2019, 12, 43.                                                                                                                                       | 1.3 | 17        |
| 33 | Rational construction of hierarchical Ni(OH)2–NiS in-plane edge hybrid nanosheet structures on the carbon cloth as a robust catalyst for electro-oxidation of urea. Journal of Alloys and Compounds, 2021, 870, 159486.              | 2.8 | 17        |
| 34 | Green Synthesis of Reduced Graphene Oxide-Silver Nanoparticles Using Environmentally Friendly<br>L-arginine for H <sub>2</sub> O <sub>2</sub> Detection. ECS Journal of Solid State Science and<br>Technology, 2016, 5, M3060-M3066. | 0.9 | 16        |
| 35 | Vertically Aligned Nitrogen-Doped Carbon Nanotube Carpet Electrodes: Highly Sensitive Interfaces for the Analysis of Serum from Patients with Inflammatory Bowel Disease. ACS Applied Materials & Interfaces, 2016, 8, 9600-9609.    | 4.0 | 16        |
| 36 | Grain boundaries of Co(OH)2-Ni-Cu nanosheets on the cotton fabric substrate for stable and efficient electro-oxidation of hydrazine. International Journal of Hydrogen Energy, 2019, 44, 24591-24603.                                | 3.8 | 16        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | MnO2 cacti-like nanostructured platform powers the enhanced electrochemical immunobiosensing of cortisol. Sensors and Actuators B: Chemical, 2020, 317, 128134.                                                                | 4.0  | 16        |
| 38 | Co, Fe-ions intercalated Ni(OH)2 network-like nanosheet arrays as highly efficient non-noble catalyst for electro-oxidation of urea. International Journal of Hydrogen Energy, 2021, 46, 34318-34332.                          | 3.8  | 15        |
| 39 | Catalytic current mapping of oxygen reduction on isolated Pt particles by atomic force<br>microscopy-scanning electrochemical microscopy. Applied Catalysis B: Environmental, 2019, 256, 117843.                               | 10.8 | 14        |
| 40 | Nitrogen-doped mesoporous carbon nanosheet network entrapped nickel nanoparticles as an efficient<br>catalyst for electro-oxidation of glycerol. International Journal of Hydrogen Energy, 2020, 45,<br>28821-28835.           | 3.8  | 14        |
| 41 | Electrochemical Oxygen Reduction Activity of Cobalt-Nitrogen-Carbon Composite Catalyst Prepared<br>by Single Precursor Pyrolysis under Autogenic Pressure. Journal of the Electrochemical Society, 2016,<br>163, F428-F436.    | 1.3  | 13        |
| 42 | Atomic Force Microscopic and Raman Investigation of Boron-Doped Diamond Nanowire Electrodes and Their Activity toward Oxygen Reduction. Journal of Physical Chemistry C, 2017, 121, 3397-3403.                                 | 1.5  | 13        |
| 43 | Electrochemical Oxidation of Glycine with Bimetallic Nickelâ~'Manganese Oxide Catalysts.<br>ChemElectroChem, 2020, 7, 561-568.                                                                                                 | 1.7  | 12        |
| 44 | Plasmon-enhanced electrocatalytic oxygen reduction in alkaline media on gold nanohole electrodes.<br>Journal of Materials Chemistry A, 2020, 8, 10395-10401.                                                                   | 5.2  | 12        |
| 45 | Simultaneous Mapping of Oxygen Reduction Activity and Hydrogen Peroxide Generation on Electrocatalytic Surfaces. ChemSusChem, 2019, 12, 2708-2714.                                                                             | 3.6  | 11        |
| 46 | Nickel-phosphate pompon flowers nanostructured network enables the sensitive detection of microRNA. Talanta, 2020, 209, 120511.                                                                                                | 2.9  | 11        |
| 47 | Enhanced electrocatalytic hydrogen evolution on a plasmonic electrode: the importance of the<br>Ti/TiO2 adhesion layer. Journal of Materials Chemistry A, 2020, 8, 13980-13986.                                                | 5.2  | 10        |
| 48 | The Synthesis of Metallic Î <sup>2</sup> -Sn Nanostructures for Use as a Novel Pt Catalyst Support and Evaluation of Their Activity Toward Methanol Electrooxidation. Electrocatalysis, 2015, 6, 554-562.                      | 1.5  | 9         |
| 49 | Electrochemical synthesis and characterization of poly(aniline-co-1-amino-9,10-anthraquinone), a nanosized conducting copolymer. Journal of Polymer Research, 2011, 18, 311-317.                                               | 1.2  | 8         |
| 50 | Mechanochemical synthesis and characterization of poly(2,5â€dimethoxy aniline) salts. Journal of<br>Applied Polymer Science, 2012, 124, 4281-4288.                                                                             | 1.3  | 8         |
| 51 | Diamond nanowires modified with poly[3-(pyrrolyl)carboxylic acid] for the immobilization of histidine-tagged peptides. Analyst, The, 2014, 139, 4343.                                                                          | 1.7  | 8         |
| 52 | Electrochemical Oxygen Reduction Activity of Metal Embedded Nitrogen Doped Carbon<br>Nanostructures Derived from Pyrolysis of Nitrogen-Rich Guanidinium Salt. Journal of the<br>Electrochemical Society, 2017, 164, F781-F789. | 1.3  | 8         |
| 53 | Pdâ€Decorated Tungsten as Ptâ€Free Bimetallic Catalysts for Hydrogen Oxidation Reaction in Alkaline<br>Electrolyte. Israel Journal of Chemistry, 2020, 60, 563-569.                                                            | 1.0  | 8         |

Preparation of a functional nanofibrous polymer membrane incorporated with poly(2-aminothio) Tj ETQq0 0 0 rg  $BT_{1,1}^{/O}$  verlock 10 Tf 50 6

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | αâ€Co(OH) <sub>2</sub> Thinâ€Layered Cactusâ€Like Nanostructures Wrapped Ni <sub>3</sub> S <sub>2Nanowires: A Robust and Potential Catalyst for Electroâ€oxidation of Hydrazine. ChemElectroChem,<br/>2021, 8, 937-947.</sub>          | 1.7 | 7         |
| 56 | Template-free mechanochemical route to prepare crystalline and electroactive polydiphenylamine nanostructures. Materials Chemistry and Physics, 2011, 129, 948-954.                                                                    | 2.0 | 6         |
| 57 | Electropolymerisation and characterisation of nanosize conducting<br>poly[( <i>o</i> â€ehloroaniline)â€ <i>co</i> â€(4,4′â€diaminodiphenylsulfone)] on a polyanilineâ€modified<br>electrode. Polymer International, 2010, 59, 456-462. | 1.6 | 5         |
| 58 | Localized surface plasmon resonance interfaces coated with poly[3-(pyrrolyl)carboxylic acid] for histidine-tagged peptide sensing. Analyst, The, 2011, 136, 4211.                                                                      | 1.7 | 5         |
| 59 | Insights on the Electrochemical Atomic Force Microscopic Catalytic Oxygen Reduction on Tip Guided<br>Platinum Particle Deposits. Electrochimica Acta, 2016, 217, 100-107.                                                              | 2.6 | 4         |
| 60 | Titanium hydride—a stable support for Pt catalysts in oxygen reduction reaction. Journal of Solid<br>State Electrochemistry, 2018, 22, 2049-2058.                                                                                      | 1.2 | 3         |
| 61 | MnOOH nanoparticles integrated nitrogen doped porous nanosheet-like carbon network as a non-noble catalyst for electro-oxidation of sodium borohydride. International Journal of Hydrogen Energy, 2021, 46, 9380-9393.                 | 3.8 | 3         |
| 62 | Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst<br>for Electro-Oxidation of Hydrazine. Nanomaterials, 2021, 11, 2857.                                                                 | 1.9 | 3         |
| 63 | Large-Scale Preparation of Polyaniline Nanospheres Anchored with Thiol-Stabilized Gold<br>Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 358-362.                                                                 | 0.9 | 0         |