
Peter Rafaj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7660165/publications.pdf Version: 2024-02-01

DETED DAEAL

#	Article	IF	CITATIONS
1	RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 2011, 109, 33-57.	1.7	2,168
2	A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 2018, 3, 515-527.	19.8	733
3	Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling and Software, 2011, 26, 1489-1501.	1.9	578
4	Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 2017, 17, 8681-8723.	1.9	496
5	Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nature Energy, 2018, 3, 589-599.	19.8	377
6	Internalisation of external cost in the power generation sector: Analysis with Global Multi-regional MARKAL model. Energy Policy, 2007, 35, 828-843.	4.2	150
7	Outlook for clean air in the context of sustainable development goals. Global Environmental Change, 2018, 53, 1-11.	3.6	119
8	Technical potentials and costs for reducing global anthropogenic methane emissions in the 2050 timeframe –results from the GAINS model. Environmental Research Communications, 2020, 2, 025004.	0.9	96
9	The public health implications of the Paris Agreement: a modelling study. Lancet Planetary Health, The, 2021, 5, e74-e83.	5.1	85
10	Air Quality Improvement Co-benefits of Low-Carbon Pathways toward Well Below the 2 °C Climate Target in China. Environmental Science & Technology, 2019, 53, 5576-5584.	4.6	81
11	Co-benefits of post-2012 global climate mitigation policies. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 801-824.	1.0	74
12	Reducing global air pollution: the scope for further policy interventions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190331.	1.6	70
13	Mitigation pathways of air pollution from residential emissions in the Beijing-Tianjin-Hebei region in China. Environment International, 2019, 125, 236-244.	4.8	66
14	Managing future air quality in megacities: A case study for Delhi. Atmospheric Environment, 2017, 161, 99-111.	1.9	63
15	Mitigation pathways towards national ambient air quality standards in India. Environment International, 2019, 133, 105147.	4.8	62
16	Cost estimates of the Kigali Amendment to phase-down hydrofluorocarbons. Environmental Science and Policy, 2017, 75, 138-147.	2.4	52
17	EU low carbon roadmap 2050: Potentials and costs for mitigation ofÂnon-CO2 greenhouse gas emissions. Energy Strategy Reviews, 2012, 1, 97-108.	3.3	47
18	Changes in European greenhouse gas and air pollutant emissions 1960–2010: decomposition of determining factors. Climatic Change, 2014, 124, 477-504.	1.7	43

Peter Rafaj

#	Article	IF	CITATIONS
19	A policy review of synergies and trade-offs in South African climate change mitigation and air pollution control strategies. Environmental Science and Policy, 2016, 57, 70-78.	2.4	42
20	Sectoral marginal abatement cost curves: implications for mitigation pledges and air pollution co-benefits for Annex I countries. Sustainability Science, 2012, 7, 169-184.	2.5	34
21	Managing future air quality in megacities: Co-benefit assessment for Delhi. Atmospheric Environment, 2018, 186, 158-177.	1.9	33
22	Assessing emissions levels and costs associated with climate and air pollution policies in South Africa. Energy Policy, 2016, 89, 160-170.	4.2	29
23	Managing future air quality in megacities: Emission inventory and scenario analysis for the Kolkata Metropolitan City, India. Atmospheric Environment, 2020, 222, 117135.	1.9	27
24	Scenario analysis of strategies to control air pollution in Pakistan. Journal of Integrative Environmental Sciences, 2013, 10, 77-91.	1.0	26
25	Electricity savings and greenhouse gas emission reductions from global phase-down of hydrofluorocarbons. Atmospheric Chemistry and Physics, 2020, 20, 11305-11327.	1.9	26
26	Decomposing Air Pollutant Emissions in Asia: Determinants and Projections. Energies, 2018, 11, 1299.	1.6	19
27	Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis. Environmental Research Letters, 2021, 16, 045005.	2.2	19
28	Factorization of air pollutant emissions: Projections versus observed trends in Europe. Science of the Total Environment, 2014, 494-495, 272-282.	3.9	18
29	Decarbonization pathways and energy investment needs for developing Asia in line with â€~well below' 2°C. Climate Policy, 2020, 20, 234-245.	2.6	18
30	Carbon in global waste and wastewater flows – its potential as energy source under alternative future waste management regimes. Advances in Geosciences, 0, 45, 105-113.	12.0	18
31	Benefits of European Climate Policies for Mercury Air Pollution. Atmosphere, 2014, 5, 45-59.	1.0	15
32	Combining policy instruments for sustainable energy systems: An assessment with the GMM model. Environmental Modeling and Assessment, 2006, 11, 277-295.	1.2	14
33	Flexible Carbon Mitigation Policies: Analysis with a Global Multi-Regional MARKAL Model. Advances in Global Change Research, 2005, , 237-266.	1.6	12
34	Economics of climate policy and collective decision making. Climatic Change, 2006, 79, 143-162.	1.7	10
35	Interactions between global climate change strategies and local air pollution: lessons learnt from the expansion of the power sector in Brazil. Climatic Change, 2018, 148, 293-309.	1.7	10
36	Modeling endogenous learning and imperfect competition effects in climate change economics. Climatic Change, 2006, 79, 121-141.	1.7	8

Peter Rafaj

#	Article	IF	CITATIONS
37	Health impacts of fine particles under climate change mitigation, air quality control, and demographic change in India. Environmental Research Letters, 2021, 16, 054025.	2.2	6
38	Future PM _{2.5} emissions from metal production to meet renewable energy demand. Environmental Research Letters, 2022, 17, 044043.	2.2	4
39	Energy Policy, Air Quality, and Climate Mitigation in South Africa: The Case for Integrated Assessment. , 2018, , 113-138.		2
40	Modeling endogenous learning and imperfect competition effects in climate change economics. , 2006, , 121-141.		0
41	Economics of climate policy and collective decision making. , 2006, , 143-162.		0