Paul Davidsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7659269/publications.pdf

Version: 2024-02-01

		471509	395702
125	1,756	17	33
papers	citations	h-index	g-index
136	136	136	1350
130	130	130	1330
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A comparison of machine learning algorithms for forecasting indoor temperature in smart buildings. Energy Systems, 2022, 13, 689-705.	3.0	49
2	Potential Benefits of Demand Responsive Transport in Rural Areas: A Simulation Study in Lolland, Denmark. Sustainability, 2022, 14, 3252.	3.2	12
3	Quality attributes in edge computing for the Internet of Things: A systematic mapping study. Internet of Things (Netherlands), 2021, 13, 100346.	7.7	11
4	A Taxonomy of Interactive Online Machine Learning Strategies. Lecture Notes in Computer Science, 2021, , 137-153.	1.3	0
5	Human-Centric Emergent Configurations: Supporting the User Through Self-configuring IoT Systems. Lecture Notes in Networks and Systems, 2021, , 411-418.	0.7	1
6	PRASH: A Framework for Privacy Risk Analysis of Smart Homes. Sensors, 2021, 21, 6399.	3.8	7
7	Agent-Based Social Simulation of the Covid-19 Pandemic: A Systematic Review. Jasss, 2021, 24, .	1.8	52
8	A Privacy-Centered System Model for Smart Connected Homes. , 2020, , .		1
9	Contextual machine teaching. , 2020, , .		O
10	A Feature Space Focus in Machine Teaching. , 2020, , .		4
11	An Agent-Based Approach to Realize Emergent Configurations in the Internet of Things. Electronics (Switzerland), 2020, 9, 1347.	3.1	7
12	A Goal-Driven Approach for Deploying Self-Adaptive IoT Systems. , 2020, , .		16
13	Activity recognition through interactive machine learning in a dynamic sensor setting. Personal and Ubiquitous Computing, 2020, , 1.	2.8	3
14	Analysing the Combined Health, Social and Economic Impacts of the Corovanvirus Pandemic Using Agent-Based Social Simulation. Minds and Machines, 2020, 30, 177-194.	4.8	29
15	What Is an Open IoT Platform? Insights from a Systematic Mapping Study. Future Internet, 2020, 12, 73.	3.8	17
16	Activity recognition and user preference learning for automated configuration of IoT environments. , 2020, , .		10
17	Modelling Commuting Activities for the Simulation of Demand Responsive Transport in Rural Areas. , 2020, , .		1
18	Evaluating Interpretability in Machine Teaching. Communications in Computer and Information Science, 2020, , 54-65.	0.5	0

#	Article	IF	CITATIONS
19	Social Phenomena Simulation. , 2020, , 819-824.		O
20	Analyzing Distributed Deep Neural Network Deployment on Edge and Cloud Nodes in IoT Systems. , 2020, , .		2
21	Modelling Commuting Activities for the Simulation of Demand Responsive Transport in Rural Areas. , 2020, , .		0
22	Characterizing Internet of Things Systems through Taxonomies: A Systematic Mapping Study. Internet of Things (Netherlands), 2019, 7, 100084.	7.7	21
23	Collaborative Sensing with Interactive Learning using Dynamic Intelligent Virtual Sensors. Sensors, 2019, 19, 477.	3.8	20
24	Elis: An Open Platform for Mobile Energy Efficiency Services in Buildings. Sustainability, 2019, 11, 858.	3.2	3
25	Edge Computing Simulators for IoT System Design: An Analysis of Qualities and Metrics. Future Internet, 2019, 11, 235.	3.8	27
26	Towards a taxonomy of interactive continual and multimodal learning for the internet of things. , 2019, , .		2
27	Interactive Machine Learning for the Internet of Things. , 2019, , .		5
28	An IoT Software Architecture for an Evacuable Building Architecture. , 2019, , .		12
29	System Architectures for Sensor-Based Dynamic Remaining Shelf-life Prediction. International Journal of Operations Research and Information Systems, 2019, 10, 21-38.	1.0	0
30	A survey and taxonomy on intelligent surveillance from a system perspective. Knowledge Engineering Review, $2018, 33, .$	2.6	5
31	A Criteria-Based Approach to Evaluating Road User Charging Systems. Procedia Computer Science, 2018, 130, 142-149.	2.0	0
32	Functional Classification and Quantitative Analysis of Smart Connected Home Devices. , $2018, \ldots$		5
33	Cloud, Edge, or Both? Towards Decision Support for Designing IoT Applications. , 2018, , .		24
34	ECo-loT: An Architectural Approach for Realizing Emergent Configurations in the Internet of Things. Lecture Notes in Computer Science, 2018, , 86-102.	1.3	11
35	An Empirical Analysis of Smart Connected Home Data. Lecture Notes in Computer Science, 2018, , 134-149.	1.3	5
36	Enacting Emergent Configurations in the IoT Through Domain Objects. Lecture Notes in Computer Science, 2018, , 279-294.	1.3	9

#	Article	IF	CITATIONS
37	An analysis of malicious threat agents for the smart connected home., 2017,,.		11
38	Integration of Smart Home technologies for district heating control in Pervasive Smart Grids. , 2017, , .		1
39	Architecting Emergent Configurations in the Internet of Things. , 2017, , .		30
40	On the use of on-line services in transport simulation. Transportation Research Procedia, 2017, 21, 208-215.	1.5	2
41	Types of Simulation. Understanding Complex Systems, 2017, , 23-37.	0.6	3
42	A Commitment-Based Approach to Realize Emergent Configurations in the Internet of Things. , 2017, , .		4
43	Emergent Configurations in the Internet of Things as System of Systems. , 2017, , .		5
44	Towards Collaborative Sensing using Dynamic Intelligent Virtual Sensors. Studies in Computational Intelligence, 2017, , 217-226.	0.9	4
45	Social Phenomena Simulation. , 2017, , 1-6.		0
46	Movement of People and Goods. Understanding Complex Systems, 2017, , 705-720.	0.6	0
47	The Fourth Wave of Digitalization and Public Transport: Opportunities and Challenges. Sustainability, 2016, 8, 1248.	3.2	52
47		3.2	52 110
	2016, 8, 1248.	3.2	
48	2016, 8, 1248. On Privacy and Security Challenges in Smart Connected Homes., 2016,, Towards an Agent-Based Model of Passenger Transportation. Lecture Notes in Computer Science, 2016,		110
48	On Privacy and Security Challenges in Smart Connected Homes., 2016,,. Towards an Agent-Based Model of Passenger Transportation. Lecture Notes in Computer Science, 2016, , 132-145. Multiagent Model for Agile Context Inference Based on Articial Immune Systems and Sparse	1.3	110
48 49 50	On Privacy and Security Challenges in Smart Connected Homes., 2016,,. Towards an Agent-Based Model of Passenger Transportation. Lecture Notes in Computer Science, 2016, , 132-145. Multiagent Model for Agile Context Inference Based on Articial Immune Systems and Sparse Distributed Representations. Lecture Notes in Computer Science, 2016, , 82-87.	1.3	110 3 1
48 49 50 51	On Privacy and Security Challenges in Smart Connected Homes., 2016,,. Towards an Agent-Based Model of Passenger Transportation. Lecture Notes in Computer Science, 2016, ,132-145. Multiagent Model for Agile Context Inference Based on Articial Immune Systems and Sparse Distributed Representations. Lecture Notes in Computer Science, 2016, ,82-87. A Role-Based Method for Analyzing Supply Chain Models., 2015, ,55-78. Exploring synergy relationships between telematic services and functionalities using cluster analysis.	1.3 1.3	110 3 1

#	Article	lF	CITATIONS
55	Analyzing the Design Space of Personal Informatics: A State-of-practice Based Classification of Existing Tools. Lecture Notes in Computer Science, 2015, , 85-97.	1.3	6
56	Combining Macro-level and Agent-based Modeling for Improved Freight Transport Analysis. Procedia Computer Science, 2014, 32, 380-387.	2.0	10
57	A Survey on the Use of Computational Models for Ex Ante Analysis of Urban Transport Policy Instruments. Procedia Computer Science, 2014, 32, 348-355.	2.0	3
58	A method for evaluation of learning components. Automated Software Engineering, 2014, 21, 41-63.	2.9	1
59	Social Phenomena Simulation. , 2014, , 1-7.		O
60	Agent-based Simulation of Freight Transport between Geographical Zones. Procedia Computer Science, 2013, 19, 829-834.	2.0	16
61	Utilising more of the loading space in intermodal line trains – Measures and decision support. Computers in Industry, 2013, 64, 146-154.	9.9	8
62	Types of Simulation. Understanding Complex Systems, 2013, , 23-36.	0.6	5
63	Movement of People and Goods. Understanding Complex Systems, 2013, , 651-665.	0.6	1
64	Agreement Technologies for Supporting the Planning and Execution of Transports., 2013,, 533-547.		1
65	Improving Multi-actor Production, Inventory and Transportation Planning through Agent-Based Optimization. Studies in Computational Intelligence, 2013 , , $1-31$.	0.9	0
66	A visualization toolkit for transportation simulation systems. , 2012, , .		0
67	Method for quantitative valuation of road freight transport telematic services. IET Intelligent Transport Systems, 2012, 6, 388-396.	3.0	7
68	Multi-Agent-Based Simulation for Analysis of Transport Policy and Infrastructure Measures. Lecture Notes in Computer Science, 2012, , 1-15.	1.3	3
69	Optimization Analysis of Multiservice Architecture Concepts in Road Transport Telematics. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2012, 16, 197-210.	4.2	5
70	TAPAS: A multi-agent-based model for simulation of transport chains. Simulation Modelling Practice and Theory, 2012, 23, 1-18.	3.8	81
71	Social Phenomena Simulation. , 2012, , 2999-3003.		0
72	Toward cost-efficient integration of telematic systems using K-spanning tree and clustering algorithms. , 2011, , .		2

#	Article	IF	CITATIONS
73	Learning to detect spyware using end user license agreements. Knowledge and Information Systems, 2011, 26, 285-307.	3.2	23
74	Plug and Play Transport Chain Management: Agent-Based Support to the Planning and Execution of Transports. Communications in Computer and Information Science, 2011, , 139-155.	0.5	1
75	APPrOVE: Application-oriented validation and evaluation of supervised learners. , 2010, , .		0
76	Software Development Process Simulation: Multi Agent-Based Simulation versus System Dynamics. Lecture Notes in Computer Science, 2010, , 73-85.	1.3	9
77	A case study on availability of sensor data in agent cooperation. Computer Science and Information Systems, 2010, 7, 597-615.	1.0	0
78	Agent based simulation architecture for evaluating operational policies in transshipping containers. Autonomous Agents and Multi-Agent Systems, 2009, 18, 220-238.	2.1	34
79	Optimization based modeling of multi-service architecture concepts in road transport telematics. , 2009, , .		0
80	Analysis of Speed Sign Classification Algorithms Using Shape Based Segmentation of Binary Images. Lecture Notes in Computer Science, 2009, , 1220-1227.	1.3	3
81	Towards Norm-Governed Behavior in Virtual Enterprises. Studies in Computational Intelligence, 2009, , 35-55.	0.9	2
82	Agent-Based Dantzig-Wolfe Decomposition. Lecture Notes in Computer Science, 2009, , 754-763.	1.3	4
83	Evaluation of Automated Guided Vehicle Systems for Container Terminals Using Multi Agent Based Simulation. Lecture Notes in Computer Science, 2009, , 85-96.	1.3	18
84	A Case Study on Availability of Sensor Data in Agent Cooperation. Studies in Computational Intelligence, 2009, , 111-120.	0.9	0
85	Security Aspects on Inter-organizational Cooperation Using Wrapper Agents. Lecture Notes in Business Information Processing, 2009, , 220-233.	1.0	2
86	A Formal Analysis of Virtual Enterprise Creation and Operation. , 2009, , 48-62.		1
87	AMORI: A Metric-based One Rule Inducer. , 2009, , .		2
88	Scalability in Distributed Multi-Agent Based Simulations: The JADE Case. , 2008, , .		17
89	Automated Spyware Detection Using End User License Agreements. , 2008, , .		7
90	Generic Methods for Multi-criteria Evaluation. , 2008, , .		6

#	Article	IF	CITATIONS
91	Demand side management in district heating systems. , 2007, , .		20
92	A Grid Based Simulation Environment for Mobile Distributed Applications. , 2007, , .		1
93	Evaluating learning algorithms and classifiers. International Journal of Intelligent Information and Database Systems, 2007, 1, 37.	0.3	14
94	On the Integration of Agent-Based and Mathematical Optimization Techniques. Lecture Notes in Computer Science, 2007, , 1-10.	1.3	25
95	Middleware Support for Performance Improvement of MABS Applications in the Grid Environment. Lecture Notes in Computer Science, 2007, , 20-35.	1.3	3
96	Characterization and Evaluation of Multi-agent System Architectural Styles. Lecture Notes in Computer Science, 2006, , 179-188.	1.3	13
97	Using the Analytic Hierarchy Process for Evaluating Multi-Agent System Architecture Candidates. Lecture Notes in Computer Science, 2006, , 205-217.	1.3	8
98	On the potential of norm-governed behavior in different categories of artificial societies. Computational and Mathematical Organization Theory, 2006, 12, 169-180.	2.0	10
99	Agent Based Simulation Architecture for Evaluating Operational Policies in Transshipping Containers. Lecture Notes in Computer Science, 2006, , 73-85.	1.3	13
100	Applications of Agent Based Simulation. , 2006, , 15-27.		24
101	Inter-Organization Interoperability in Transport Chains Using Adapters Based on Open Source Freeware. , 2006, , 35-42.		4
102	A Hybrid Micro-Simulator for Determining the Effects of Governmental Control Policies on Transport Chains. Lecture Notes in Computer Science, 2005, , 236-247.	1.3	12
103	An analysis of agent-based approaches to transport logistics. Transportation Research Part C: Emerging Technologies, 2005, 13, 255-271.	7.6	248
104	Distributed monitoring and control of office buildings by embedded agents. Information Sciences, 2005, 171, 293-307.	6.9	79
105	Comparing approaches to predict transmembrane domains in protein sequences. , 2005, , .		0
106	On the metaphysics of agents. , 2005, , .		3
107	Agent-Based Approaches to Transport Logistics. , 2005, , 1-15.		8
108	A Framework for Evaluation of Multi-Agent System Approaches to Logistics Network Management. , 2004, , 27-39.		4

#	Article	lF	CITATIONS
109	A Framework for Preventive State Anticipation. Lecture Notes in Computer Science, 2003, , 151-166.	1.3	14
110	On Multi Agent Based Simulation of Software Development Processes. Lecture Notes in Computer Science, 2003, , 171-180.	1.3	10
111	Evaluating Multi-agent System Architectures: A Case Study Concerning Dynamic Resource Allocation. Lecture Notes in Computer Science, 2003, , 170-183.	1.3	7
112	A multi-agent system architecture for coordination of just-in-time production and distribution. Knowledge Engineering Review, 2002, $17,317-329$.	2.6	19
113	An Agent-Based Approach to Monitoring and Control of District Heating Systems. Lecture Notes in Computer Science, 2002, , 801-811.	1.3	8
114	Software agents for bioprocess monitoring and control. Journal of Chemical Technology and Biotechnology, 2002, 77, 761-766.	3.2	12
115	Four Multi-agent Architectures for Intelligent Network Load Management. Lecture Notes in Computer Science, 2002, , 239-248.	1.3	5
116	Categories of Artificial Societies. Lecture Notes in Computer Science, 2001, , 1-9.	1.3	35
117	Emergen Societies of Information Agents. Lecture Notes in Computer Science, 2000, , 143-153.	1.3	7
118	Coordination Models for Dynamic Resource Allocation. Lecture Notes in Computer Science, 2000, , 182-197.	1.3	6
119	Integrating models of discrimination and characterization. Intelligent Data Analysis, 1999, 3, 95-109.	0.9	O
120	Measure-based classifier performance evaluation. Pattern Recognition Letters, 1999, 20, 1165-1173.	4.2	13
121	Linearly anticipatory autonomous agents. , 1997, , .		3
122	Learning by linear anticipation in multi-agent systems. Lecture Notes in Computer Science, 1997, , 62-72.	1.3	4
123	Towards anticipatory agents. Lecture Notes in Computer Science, 1995, , 191-202.	1.3	18
124	A multi-agent system for controlling intelligent buildings. , 0, , .		26
125	The Architecture of an Information System for the Management of Hybrid Energy Grids. , 0, , .		1