

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7659239/publications.pdf Version: 2024-02-01

VE EAN

#	Article	IF	CITATIONS
1	Lateral Extensions to Nanowires for Controlling Nickel Silicidation Kinetics: Improving Contact Uniformity of Nanoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 4371-4378.	5.0	9
2	Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2021, 15, 8780-8789.	14.6	52
3	Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride. ACS Nano, 2021, 15, 13591-13603.	14.6	27
4	Giant photoluminescence enhancement in MoSe ₂ monolayers treated with oleic acid ligands. Nanoscale Advances, 2021, 3, 4216-4225.	4.6	14
5	A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing. Scientific Reports, 2021, 11, 22915.	3.3	11
6	Oxidising and carburising catalyst conditioning for the controlled growth and transfer of large crystal monolayer hexagonal boron nitride. 2D Materials, 2020, 7, 024005.	4.4	13
7	Understanding metal organic chemical vapour deposition of monolayer WS ₂ : the enhancing role of Au substrate for simple organosulfur precursors. Nanoscale, 2020, 12, 22234-22244.	5.6	13
8	High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures. ACS Nano, 2020, 14, 15293-15305.	14.6	5
9	Enhancing Photoluminescence and Mobilities in WS ₂ Monolayers with Oleic Acid Ligands. Nano Letters, 2019, 19, 6299-6307.	9.1	80
10	Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal Boron Nitride. ACS Nano, 2019, 13, 4538-4547.	14.6	47
11	A Peeling Approach for Integrated Manufacturing of Large Monolayer h-BN Crystals. ACS Nano, 2019, 13, 2114-2126.	14.6	35
12	Utilizing Interlayer Excitons in Bilayer WS ₂ for Increased Photovoltaic Response in Ultrathin Graphene Vertical Cross-Bar Photodetecting Tunneling Transistors. ACS Nano, 2018, 12, 4669-4677.	14.6	37
13	Lateral Graphene ontacted Vertically Stacked WS ₂ /MoS ₂ Hybrid Photodetectors with Large Gain. Advanced Materials, 2017, 29, 1702917.	21.0	111
14	Electrical Breakdown of Suspended Mono- and Few-Layer Tungsten Disulfide <i>via</i> Sulfur Depletion Identified by <i>in Situ</i> Atomic Imaging. ACS Nano, 2017, 11, 9435-9444.	14.6	16
15	Negative Electro-conductance in Suspended 2D WS ₂ Nanoscale Devices. ACS Applied Materials & Interfaces, 2016, 8, 32963-32970.	8.0	10
16	Ultrathin 2D Photodetectors Utilizing Chemical Vapor Deposition Grown WS ₂ With Graphene Electrodes. ACS Nano, 2016, 10, 7866-7873.	14.6	264
17	Photoinduced Schottky Barrier Lowering in 2D Monolayer WS ₂ Photodetectors. Advanced Optical Materials, 2016, 4, 1573-1581.	7.3	62
18	Doping Graphene Transistors Using Vertical Stacked Monolayer WS ₂ Heterostructures Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2016, 8, 1644-1652.	8.0	61

Ye Fan

#	Article	IF	CITATIONS
19	Uniformity of large-area bilayer graphene grown by chemical vapor deposition. Nanotechnology, 2015, 26, 395601.	2.6	21
20	Temperature dependence of atomic vibrations in mono-layer graphene. Journal of Applied Physics, 2015, 118, .	2.5	18
21	Temperature Dependence of the Reconstruction of Zigzag Edges in Graphene. ACS Nano, 2015, 9, 4786-4795.	14.6	68
22	Shape Evolution of Monolayer MoS ₂ Crystals Grown by Chemical Vapor Deposition. Chemistry of Materials, 2014, 26, 6371-6379.	6.7	698
23	Controlling sulphur precursor addition for large single crystal domains of WS ₂ . Nanoscale, 2014, 6, 12096-12103.	5.6	149
24	Crack-Free Growth and Transfer of Continuous Monolayer Graphene Grown on Melted Copper. Chemistry of Materials, 2014, 26, 4984-4991.	6.7	54
25	Rippling Graphene at the Nanoscale through Dislocation Addition. Nano Letters, 2013, 13, 4937-4944.	9.1	59
26	Large Single Crystals of Graphene on Melted Copper Using Chemical Vapor Deposition. ACS Nano, 2012, 6, 5010-5017.	14.6	218