List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7659148/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zeolite-encaged palladium catalysts for heterogeneous Suzuki-Miyaura cross-coupling reactions. Catalysis Today, 2023, 410, 237-246.	4.4	16
2	Homogeneous-like Alkyne Selective Hydrogenation Catalyzed by Cationic Nickel Confined in Zeolite. CCS Chemistry, 2022, 4, 949-962.	7.8	20
3	Catalytic Hydration of Aromatic Alkynes to Ketones over H-MFI Zeolites. Chemical Research in Chinese Universities, 2022, 38, 173-180.	2.6	4
4	Progressive steps and catalytic cycles in methanol-to-hydrocarbons reaction over acidic zeolites. Fundamental Research, 2022, 2, 184-192.	3.3	28
5	Application of ammonia probe-assisted solid-state NMR technique in zeolites and catalysis. Magnetic Resonance Letters, 2022, 2, 28-37.	1.3	8
6	Direct Propylene Epoxidation with Molecular Oxygen over Cobalt-Containing Zeolites. Journal of the American Chemical Society, 2022, 144, 4260-4268.	13.7	37
7	Plate-Like ZSM-5 Zeolites as Robust Catalysts for the Cracking of Hydrocarbons. ACS Applied Materials & Interfaces, 2022, 14, 11415-11424.	8.0	20
8	Design of plate-like H[Ga]MFI zeolite catalysts for high-performance methanol-to-propylene reaction. Microporous and Mesoporous Materials, 2022, 333, 111767.	4.4	14
9	Zeolites for separation: Fundamental and application. Journal of Energy Chemistry, 2022, 71, 288-303.	12.9	45
10	Transfer printing platelike MFI crystals as seeds for the preparation of silicalite-1 membranes. Microporous and Mesoporous Materials, 2022, 336, 111895.	4.4	4
11	Cascade adsorptive separation of light hydrocarbons by commercial zeolites. Journal of Energy Chemistry, 2022, 72, 299-305.	12.9	5
12	Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation. Journal of Catalysis, 2021, 394, 236-244.	6.2	124
13	Metal-seed assistant photodeposition of platinum over Ta3N5 photocatalyst for promoted solar hydrogen production under visible light. Journal of Energy Chemistry, 2021, 55, 444-448.	12.9	27
14	Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation. Journal of Energy Chemistry, 2021, 57, 92-98.	12.9	54
15	Self-aldol condensation of aldehydes over Lewis acidic rare-earth cations stabilized by zeolites. Chinese Journal of Catalysis, 2021, 42, 595-605.	14.0	24
16	Platelike MFI Crystals with Controlled Crystal Faces Aspect Ratio. Journal of the American Chemical Society, 2021, 143, 1993-2004.	13.7	93
17	Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie, 2021, 133, 6600-6606.	2.0	17
18	Efficient Separation of Acetylene and Carbon Dioxide in a Decorated Zeolite. Angewandte Chemie - International Edition, 2021, 60, 6526-6532.	13.8	62

#	Article	IF	CITATIONS
19	Titelbild: Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Smallâ€Pore Zeolites (Angew. Chem. 18/2021). Angewandte Chemie, 2021, 133, 9813-9813.	2.0	1
20	Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Smallâ€Pore Zeolites. Angewandte Chemie, 2021, 133, 10104-10110.	2.0	10
21	Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Smallâ€Pore Zeolites. Angewandte Chemie - International Edition, 2021, 60, 10016-10022.	13.8	39
22	Synthesis of NUâ€87 Zeolite via Aging and Dualâ€Templating Methods. ChemistrySelect, 2021, 6, 3952-3957.	1.5	1
23	Propane dehydrogenation catalyzed by in-situ partially reduced zinc cations confined in zeolites. Journal of Energy Chemistry, 2021, 63, 262-269.	12.9	48
24	Stabilizing Isolated Rhodium Cations by MFI Zeolite for Heterogeneous Methanol Carbonylation. ACS Catalysis, 2021, 11, 7249-7256.	11.2	18
25	Water-involved methane-selective catalytic oxidation by dioxygen over copper zeolites. CheM, 2021, 7, 1557-1568.	11.7	63
26	Confinement in a Zeolite and Zeolite Catalysis. Accounts of Chemical Research, 2021, 54, 2894-2904.	15.6	159
27	Tandem Lewis acid catalysis for the conversion of alkenes to 1,2-diols in the confined space of bifunctional TiSn-Beta zeolite. Chinese Journal of Catalysis, 2021, 42, 1176-1184.	14.0	12
28	Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nature Communications, 2021, 12, 4661.	12.8	32
29	Methane combustion over palladium catalyst within the confined space of MFI zeolite. Chinese Journal of Catalysis, 2021, 42, 1689-1699.	14.0	36
30	Synthesis and catalytic application of nanorod-like FER-type zeolites. Journal of Materials Chemistry A, 2021, 9, 24922-24931.	10.3	15
31	Multifunctional heteroatom zeolites: construction and applications. Frontiers of Chemical Science and Engineering, 2021, 15, 1462-1486.	4.4	9
32	Zeolite-Encaged Isolated Platinum Ions Enable Heterolytic Dihydrogen Activation and Selective Hydrogenations. Journal of the American Chemical Society, 2021, 143, 20898-20906.	13.7	66
33	Methane Activation and Utilization: Current Status and Future Challenges. Energy Technology, 2020, 8, 1900826.	3.8	92
34	Reaction kinetics and mechanism of CH ₄ -SCR on Ru–In/H-SSZ-13. Catalysis Science and Technology, 2020, 10, 6025-6034.	4.1	8
35	Spectroscopic Signature of Lewis Acidic Framework and Extraframework Sn Sites in Beta Zeolites. ACS Catalysis, 2020, 10, 14135-14146.	11.2	67
36	Reversed configuration of photocatalyst to exhibit improved properties of basic processes compared to conventional one. Science China Chemistry, 2020, 63, 771-776.	8.2	4

#	Article	IF	CITATIONS
37	Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science, 2020, 368, 1002-1006.	12.6	179
38	Entrapped NbOx clusters in MFI zeolite for sustainable acid catalysis. Microporous and Mesoporous Materials, 2020, 305, 110361.	4.4	9
39	Fabrication of Hierarchical Sn-Beta Zeolite as Efficient Catalyst for Conversion of Cellulosic Sugar to Methyl Lactate. ACS Sustainable Chemistry and Engineering, 2020, 8, 3796-3808.	6.7	50
40	Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385 nm monochromatic light irradiation. Chinese Journal of Catalysis, 2020, 41, 598-603.	14.0	17
41	Zeolite Stabilized Isolated Molybdenum Species for Catalytic Oxidative Desulfurization. Acta Chimica Sinica, 2020, 78, 1404.	1.4	8
42	Coordinatively unsaturated sites in zeolite matrix: Construction and catalysis. Chinese Journal of Catalysis, 2019, 40, 1255-1281.	14.0	32
43	Noble Metal Particles Confined in Zeolites: Synthesis, Characterization, and Applications. Advanced Science, 2019, 6, 1900299.	11.2	127
44	Hollow Znâ^'Co Based Zeolitic Imidazole Framework as a Robust Heterogeneous Catalyst for Enhanced CO ₂ Chemical Fixation. Chemistry - an Asian Journal, 2019, 14, 4375-4382.	3.3	11
45	Stabilizing copper species using zeolite for ethanol catalytic dehydrogenation to acetaldehyde. Chinese Journal of Catalysis, 2019, 40, 1375-1384.	14.0	50
46	Cascade Conversion of Acetic Acid to Isobutene over Yttrium-Modified Siliceous Beta Zeolites. ACS Catalysis, 2019, 9, 9726-9738.	11.2	36
47	Hierarchical FAU-Type Hafnosilicate Zeolite as a Robust Lewis Acid Catalyst for Catalytic Transfer Hydrogenation. ACS Sustainable Chemistry and Engineering, 2019, 7, 16329-16343.	6.7	29
48	Role of Acetaldehyde in the Roadmap from Initial Carbon–Carbon Bonds to Hydrocarbons during Methanol Conversion. ACS Catalysis, 2019, 9, 6491-6501.	11.2	60
49	Acetylene-Selective Hydrogenation Catalyzed by Cationic Nickel Confined in Zeolite. Journal of the American Chemical Society, 2019, 141, 9920-9927.	13.7	112
50	Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of BrA,nsted acids. Applied Catalysis B: Environmental, 2019, 256, 117777.	20.2	46
51	Mechanistic Insights into One-Step Catalytic Conversion of Ethanol to Butadiene over Bifunctional Zn–Y/Beta Zeolite. ACS Catalysis, 2018, 8, 2760-2773.	11.2	109
52	Bimetallic Cr-In/H-SSZ-13 for selective catalytic reduction of nitric oxide by methane. Chinese Journal of Catalysis, 2018, 39, 1004-1011.	14.0	8
53	Polyoxometalate-Based Metal–Organic Frameworks as Visible-Light-Induced Photocatalysts. Inorganic Chemistry, 2018, 57, 5030-5037	4.0	130
54	Robust cobalt oxide catalysts for controllable hydrogenation of carboxylic acids to alcohols. Chinese Journal of Catalysis, 2018, 39, 250-257.	14.0	30

#	Article	IF	CITATIONS
55	Lead-containing Beta zeolites as versatile Lewis acid catalysts for the aminolysis of epoxides. Microporous and Mesoporous Materials, 2018, 264, 230-239.	4.4	22
56	Effect of <i>n</i> -Butanol Cofeeding on the Methanol to Aromatics Conversion over Ga-Modified Nano H-ZSM-5 and Its Mechanistic Interpretation. ACS Catalysis, 2018, 8, 1352-1362.	11.2	88
57	Construction of Bifunctional Co/Hâ€ZSMâ€5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Dieselâ€Range Alkanes. ChemSusChem, 2018, 11, 2179-2188.	6.8	34
58	On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion. Journal of Catalysis, 2018, 367, 7-15.	6.2	66
59	Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts. Microporous and Mesoporous Materials, 2018, 270, 265-273.	4.4	35
60	Ru-In/H-SSZ-13 for the selective reduction of nitric oxide by methane: Insights from temperature-programmed desorption studies. Applied Catalysis B: Environmental, 2018, 236, 404-412.	20.2	21
61	Oxidative dehydrogenation of propane over Pt–Sn/Si-beta catalysts: key role of Pt–Sn interaction. Catalysis Science and Technology, 2018, 8, 3044-3051.	4.1	28
62	Selectivity Modulation of Encapsulated Palladium Nanoparticles by Zeolite Microenvironment for Biomass Catalytic Upgrading. ACS Catalysis, 2018, 8, 8578-8589.	11.2	114
63	Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable BrÃ,nsted acid density. Catalysis Science and Technology, 2017, 7, 607-618.	4.1	58
64	Fabrication of WO _{2.72} /RGO nano-composites for enhanced photocatalysis. RSC Advances, 2017, 7, 2606-2614.	3.6	30
65	High activity of hot electrons from bulk 3D graphene materials for efficient photocatalytic hydrogen production. Nano Research, 2017, 10, 1662-1672.	10.4	49
66	Zeolite Structural Confinement Effects Enhance One-Pot Catalytic Conversion of Ethanol to Butadiene. ACS Catalysis, 2017, 7, 3703-3706.	11.2	87
67	SnS ₂ Nanoplates with Specific Facets Exposed for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. ChemPhotoChem, 2017, 1, 60-69.	3.0	22
68	Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to Î ³ -valerolactone. Applied Catalysis B: Environmental, 2017, 217, 115-124.	20.2	182
69	One-pot construction of Fe/ZSM-5 zeolites for the selective catalytic reduction of nitrogen oxides by ammonia. Catalysis Science and Technology, 2017, 7, 3036-3044.	4.1	76
70	Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization. Applied Catalysis B: Environmental, 2017, 205, 393-403.	20.2	152
71	A simple synthesis of Ga ₂ O ₃ and GaN nanocrystals. RSC Advances, 2017, 7, 47898-47903.	3.6	14
72	Robust ruthenium catalysts for the selective conversion of stearic acid to diesel-range alkanes. Applied Catalysis B: Environmental, 2017, 201, 137-149.	20.2	60

#	Article	IF	CITATIONS
73	Upgrading of Biomass-Derived Furans into Value-Added Chemicals. Biofuels and Biorefineries, 2017, , 273-303.	0.5	1
74	Insight into the formation of the tert-butyl cation confined inside H-ZSM-5 zeolite from NMR spectroscopy and DFT calculations. Chemical Communications, 2016, 52, 10606-10608.	4.1	29
75	Lewis Acid Catalysis Confined in Zeolite Cages as a Strategy for Sustainable Heterogeneous Hydration of Epoxides. ACS Catalysis, 2016, 6, 2955-2964.	11.2	86
76	Diels-Alder and dehydration reactions of furan derivatives with ethylene catalyzed by liquid BrÃ,nsted acids and Lewis acids. Journal of Molecular Catalysis A, 2016, 420, 134-141.	4.8	43
77	One-pot hydrothermal fabrication of layered β-Ni(OH) 2 /g-C 3 N 4 nanohybrids for enhanced photocatalytic water splitting. Applied Catalysis B: Environmental, 2016, 194, 74-83.	20.2	102
78	Al-free Fe-beta as a robust catalyst for selective reduction of nitric oxide by ammonia. Catalysis Science and Technology, 2016, 6, 8325-8335.	4.1	36
79	A swelling-changeful catalyst for glycerol acetylation with controlled acid concentration. Fuel Processing Technology, 2016, 142, 228-234.	7.2	14
80	Identification of <i>tert</i> â€Butyl Cations in Zeolite Hâ€ZSMâ€5: Evidence from NMR Spectroscopy and DFT Calculations. Angewandte Chemie - International Edition, 2015, 54, 8783-8786.	13.8	63
81	Nanosheets: Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting (Adv. Mater. 9/2015). Advanced Materials, 2015, 27, 1579-1579.	21.0	8
82	Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions. Fuel, 2015, 150, 175-183.	6.4	179
83	Hydrothermal synthesis and photocatalytic properties of tantalum pentoxide nanorods. Chinese Journal of Catalysis, 2015, 36, 432-438.	14.0	18
84	Ultrafine metal nanoparticles loaded on TiO2 nanorods: Synthesis strategy and photocatalytic activity. Chinese Journal of Catalysis, 2015, 36, 1968-1975.	14.0	11
85	Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6, 5881.	12.8	653
86	Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chemistry, 2015, 17, 1744-1755.	9.0	169
87	Intermediates and Dominating Reaction Mechanism During the Early Period of the Methanol-to-Olefin Conversion on SAPO-41. Journal of Physical Chemistry C, 2015, 119, 2637-2645.	3.1	31
88	Tungsten Oxide Single Crystal Nanosheets for Enhanced Multichannel Solar Light Harvesting. Advanced Materials, 2015, 27, 1580-1586.	21.0	436
89	Fabrication of Ta2O5 films on tantalum substrate for efficient photocatalysis. Catalysis Communications, 2015, 65, 24-29.	3.3	35
90	Evidence of rutile-to-anatase photo-induced electron transfer in mixed-phase TiO ₂ by solid-state NMR spectroscopy. Chemical Communications, 2015, 51, 13779-13782.	4.1	32

#	Article	IF	CITATIONS
91	Facile synthesis of an iron doped rutile TiO ₂ photocatalyst for enhanced visible-light-driven water oxidation. Journal of Materials Chemistry A, 2015, 3, 21434-21438.	10.3	50
92	Incorporation of cerium atoms into Al-free Beta zeolite framework for catalytic application. Chinese Journal of Catalysis, 2015, 36, 801-805.	14.0	25
93	Selective Catalytic Hydrogenolysis of Carbon–Carbon σ Bonds in Primary Aliphatic Alcohols over Supported Metals. ACS Catalysis, 2015, 5, 7199-7207.	11.2	19
94	Ru/TiO2 for the preferential oxidation of CO in H2-rich stream: Effects of catalyst pre-treatments and reconstruction of Ru sites. Fuel, 2015, 143, 318-326.	6.4	27
95	Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34. ACS Catalysis, 2015, 5, 317-326.	11.2	193
96	介å²å^†åç›MCM-48的氮化与表é¢èƒºåŒ–åŠå…¶ç¢±å,¬åŒ–å应性能. Scientia Sinica Chimica, 2015, 4	45 03 96-40)4Ω
97	Nb2O5/TiO2 heterojunctions: Synthesis strategy and photocatalytic activity. Applied Catalysis B: Environmental, 2014, 152-153, 280-288.	20.2	207
98	Cyclohexane oxidation: Small organic molecules as catalysts. Chinese Journal of Catalysis, 2014, 35, 279-285.	14.0	11
99	Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2. Chemical Physics Letters, 2014, 594, 34-40.	2.6	7
100	Verifying the dominant catalytic cycle of the methanol-to-hydrocarbon conversion over SAPO-41. Catalysis Science and Technology, 2014, 4, 688-696.	4.1	22
101	A procedure for the preparation of Ti-Beta zeolites for catalytic epoxidation with hydrogen peroxide. Green Chemistry, 2014, 16, 2281-2291.	9.0	136
102	One-step hydrothermal amino-grafting of graphene oxide as an efficient solid base catalyst. Chemical Communications, 2014, 50, 4305.	4.1	19
103	Oxidative dehydrogenation of propane with nitrous oxide over Fe–O–Al species occluded in ZSM-5: Reaction and deactivation mechanisms. Microporous and Mesoporous Materials, 2014, 198, 82-91.	4.4	15
104	Improved Postsynthesis Strategy to Sn-Beta Zeolites as Lewis Acid Catalysts for the Ring-Opening Hydration of Epoxides. ACS Catalysis, 2014, 4, 2801-2810.	11.2	247
105	Synthetic Design of Gold Nanoparticles on Anatase TiO ₂ {001} for Enhanced Visible Light Harvesting. ACS Sustainable Chemistry and Engineering, 2014, 2, 1940-1946.	6.7	42
106	Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13. Journal of Catalysis, 2014, 314, 10-20.	6.2	84
107	Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. Physical Chemistry Chemical Physics, 2013, 15, 10978.	2.8	549
108	Oxidative dehydrogenation of propane with nitrous oxide over Fe-ZSM-5 prepared by grafting:	4.3	25

Characterization and performance. Applied Catalysis A: General, 2013, 468, 230-239. 108

#	Article	IF	CITATIONS
109	Combination catalyst for the purification of automobile exhaust from lean-burn engine. Fuel Processing Technology, 2013, 108, 41-46.	7.2	13
110	Synergetic promotion of the photocatalytic activity of TiO2 by gold deposition under UV-visible light irradiation. Chemical Communications, 2013, 49, 11767.	4.1	61
111	Oxidative dehydrogenation of propane with nitrous oxide over Fe–MFI prepared by ion-exchange: effect of acid post-treatments. Catalysis Science and Technology, 2013, 3, 1333.	4.1	37
112	Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: Role of graphene support. Applied Catalysis B: Environmental, 2013, 136-137, 177-185.	20.2	143
113	Mechanisms of the Deactivation of SAPO-34 Materials with Different Crystal Sizes Applied as MTO Catalysts. ACS Catalysis, 2013, 3, 588-596.	11.2	198
114	Recent Development of Nitrogen-Incorporated Molecular Sieves. Chinese Journal of Catalysis, 2013, 33, 51-59.	14.0	0
115	Investigation of Selective Catalytic Reduction of N ₂ O by NH ₃ over an Fe–Mordenite Catalyst: Reaction Mechanism and O ₂ Effect. ACS Catalysis, 2012, 2, 512-520.	11.2	68
116	Effect of the Methanol-to-Olefin Conversion on the PFG NMR Self-Diffusivities of Ethane and Ethene in Large-Crystalline SAPO-34. Journal of Physical Chemistry C, 2012, 116, 2469-2476.	3.1	49
117	Cobalt zeolites: Preparation, characterization and catalytic properties for N ₂ O decomposition. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 502-509.	1.5	13
118	Methanolâ€ŧoâ€Olefin Conversion Catalyzed by Low‧ilica AlPOâ€34 with Traces of BrÃ,nsted Acid Sites: Combined Catalytic and Spectroscopic Investigations. ChemCatChem, 2012, 4, 1428-1435.	3.7	53
119	NO selective reduction by hydrogen over bimetallic Pd–Ir/TiO2 catalyst. Catalysis Communications, 2012, 24, 38-43.	3.3	64
120	Supported Pd catalysts for solvent-free benzyl alcohol selective oxidation: Effects of calcination pretreatments and reconstruction of Pd sites. Applied Catalysis B: Environmental, 2012, 115-116, 7-15.	20.2	109
121	Scaling up of ethanol production from sugar molasses using yeast immobilized with alginate-based MCM-41 mesoporous zeolite composite carrier. Bioresource Technology, 2012, 115, 208-214.	9.6	18
122	Nitridation of MgO-loaded MCM-41 and its beneficial applications in base-catalyzed reactions. Microporous and Mesoporous Materials, 2012, 148, 184-190.	4.4	23
123	Phosphorus modified HMCM-22: Characterization and catalytic application in methanol-to-hydrocarbons conversion. Microporous and Mesoporous Materials, 2012, 151, 99-106.	4.4	32
124	Catalytic dehydration of methanol to dimethyl ether over aluminophosphate and silico-aluminophosphate molecular sieves. Catalysis Communications, 2011, 12, 535-538.	3.3	57
125	Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of BrÃ,nsted Acid Sites and Framework Structures. ACS Catalysis, 2011, 1, 292-299.	11.2	140
126	Low temperature CO oxidation on Cu–Cu2O/TiO2 catalyst prepared by photodeposition. Catalysis Science and Technology, 2011, 1, 601.	4.1	102

#	Article	IF	CITATIONS
127	Solvent-free selective photocatalytic oxidation of benzyl alcohol over modified TiO2. Green Chemistry, 2011, 13, 3265.	9.0	119
128	Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves. Catalysis Communications, 2011, 16, 124-127.	3.3	24
129	Nitrate hydrogenation on Pd–Cu/TiO2 catalyst prepared by photo-deposition. Catalysis Today, 2011, 175, 356-361.	4.4	15
130	Fate of BrÃ,nsted Acid Sites and Benzeneâ€Based Carbenium Ions During Methanolâ€ŧoâ€Olefin Conversion on SAPOâ€34. ChemCatChem, 2011, 3, 1130-1133.	3.7	49
131	Nitridation of BaO supported on mesoporous materials: Basicity characterization and catalytic properties. Applied Catalysis A: General, 2011, 391, 225-233.	4.3	27
132	Synthesis of Uniform TiO ₂ Nanoparticles with Egg Albumen Proteins as Novel Biotemplate. Journal of Nanoscience and Nanotechnology, 2010, 10, 5767-5775.	0.9	22
133	The Effect of Organic Impurities Originating from the Incomplete Combustion of Organic Templates on the Methanolâ€toâ€Olefins Reaction over SAPOâ€46. ChemCatChem, 2010, 2, 1548-1551.	3.7	8
134	Confirmation of NH species in the framework of nitrogen-incorporated ZSM-5 zeolite by experimental and theoretical studies. Microporous and Mesoporous Materials, 2010, 127, 25-31.	4.4	20
135	Physico-chemical characterization of nitrided mesoporous silicon MCM-41. Microporous and Mesoporous Materials, 2010, 135, 2-8.	4.4	14
136	Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties. Applied Catalysis B: Environmental, 2010, 93, 259-266.	20.2	70
137	Low temperature H2-SCR over platinum catalysts supported on Ti-containing MCM-41. Applied Catalysis B: Environmental, 2010, 94, 254-262.	20.2	71
138	Study on Pt/Al-MCM-41 for NO selective reduction by hydrogen. Catalysis Today, 2010, 158, 228-234.	4.4	39
139	Catalytic oxidation of NO over TiO2 supported platinum clusters. II: Mechanism study by in situ FTIR spectra. Catalysis Today, 2010, 158, 361-369.	4.4	58
140	Selective catalytic reduction of NO by hydrogen over Pt/ZSM-35. Catalysis Today, 2010, 158, 452-458.	4.4	44
141	Preparation of binary washcoat deposited on cordierite substrate for catalytic applications. Ceramics International, 2010, 36, 529-534.	4.8	23
142	Fast Catalytic Reduction of NOx by H2 over Pd-Based Catalysts. Chinese Journal of Catalysis, 2010, 31, 261-263.	14.0	32
143	The promotional effect of Cr on catalytic activity of Pt/ZSM-35 for H2-SCR in excess oxygen. Catalysis Communications, 2010, 11, 955-959.	3.3	38
144	Progress in Selective Catalytic Reduction of NO _{<i>x</i>} by Hydrogen in Excess Oxygen. Chinese Journal of Catalysis, 2010, 31, 912-918.	14.0	4

#	Article	IF	CITATIONS
145	Fast Catalytic Reduction of NO _{<i>x</i>} by H ₂ over Pd-Based Catalysts. Chinese Journal of Catalysis, 2010, 31, 261-263.	14.0	1
146	Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Separation and Purification Technology, 2009, 66, 84-89.	7.9	126
147	Fe-mordenite/cordierite monolith for the catalytic decomposition of nitrous oxide. Ceramics International, 2009, 35, 3097-3101.	4.8	19
148	Catalytic Oxidation of Nitric Oxide to Nitrogen Dioxide on Ru-FAU. Catalysis Letters, 2009, 131, 656-662.	2.6	6
149	HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts. Microporous and Mesoporous Materials, 2009, 117, 450-457.	4.4	67
150	A study on N2O catalytic decomposition over Co/MgO catalysts. Journal of Hazardous Materials, 2009, 163, 1332-1337.	12.4	68
151	NO decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds. Journal of Colloid and Interface Science, 2009, 333, 423-430.	9.4	37
152	Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity. Journal of Colloid and Interface Science, 2009, 339, 160-167.	9.4	17
153	Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chemical Engineering Journal, 2009, 149, 281-288.	12.7	166
154	A comprehensive investigation of influences of NO and O2 on N2O-SCR by CH4 over Fe-USY zeolite. Applied Catalysis B: Environmental, 2009, 91, 262-268.	20.2	13
155	Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Applied Catalysis B: Environmental, 2009, 88, 224-231.	20.2	81
156	Comparative Studies on Porous Material-Supported Pd Catalysts for Catalytic Oxidation of Benzene, Toluene, and Ethyl Acetate. Industrial & Engineering Chemistry Research, 2009, 48, 6930-6936.	3.7	101
157	Promoted and Controllable Self-Assembly of Hydrolyzed Siloxane and Triblock Copolymer under Organic Polyhydroxy Acids. Industrial & Engineering Chemistry Research, 2009, 48, 6308-6314.	3.7	2
158	Iron-exchanged FAU zeolites: Preparation, characterization and catalytic properties for N2O decomposition. Applied Catalysis A: General, 2008, 344, 131-141.	4.3	66
159	Highly active and stable bimetallic Ir/Fe-USY catalysts for direct and NO-assisted N2O decomposition. Applied Catalysis B: Environmental, 2008, 84, 734-741.	20.2	26
160	A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanoparticles. Microporous and Mesoporous Materials, 2008, 114, 214-221.	4.4	30
161	Influences of Mesoporous Structure on the NO+H2+O2 Low Temperature Reaction over Pt/Si-MCM-41 Catalyst. Acta Physico-chimica Sinica, 2008, 24, 369-374.	0.6	4
162	Ir/ZSM-5/cordierite monolith for catalytic NOx reduction from automobile exhaust. Catalysis Communications, 2008, 9, 409-415.	3.3	12

#	Article	IF	CITATIONS
163	Wet ion exchanged Fe-USY catalyst for effective N2O decomposition. Catalysis Communications, 2008, 9, 1745-1748.	3.3	9
164	NO selective reduction by hydrogen on potassium titanate supported palladium catalyst. Catalysis Communications, 2008, 9, 1827-1832.	3.3	51
165	β-Cyclodextrin-Assisted Synthesis of Superparamagnetic Magnetite Nanoparticles from a Single Fe(III) Precursor. Journal of Physical Chemistry C, 2008, 112, 17148-17155.	3.1	46
166	Novel CH ₄ Combustion Catalysts Derived from Cuâ^'Co/Xâ^'Al (X = Fe, Mn, La, Ce) Hydrotalcite-like Compounds. Energy & Fuels, 2008, 22, 2131-2137.	5.1	65
167	Novel Ruâ^'Mgâ^'Alâ^'O Catalyst Derived from Hydrotalcite-like Compound for NO Storage/Decomposition/Reduction. Journal of Physical Chemistry C, 2007, 111, 10552-10559.	3.1	30
168	Feâ^'USY Zeolite Catalyst for Effective Decomposition of Nitrous Oxide. Environmental Science & Technology, 2007, 41, 7901-7906.	10.0	37
169	Selective catalytic reduction of NO by propane in excess oxygen over IrCu-ZSM-5 catalyst. Catalysis Communications, 2007, 8, 583-588.	3.3	42
170	Novel Multiâ€functional Mixedâ€oxide Catalysts for Effective NO _{<i>x</i>} Capture, Decomposition, and Reduction. Advanced Functional Materials, 2007, 17, 3598-3606.	14.9	46
171	Synthesis of Anatase TiO2 Nanoparticles with \hat{l}^2 -Cyclodextrin as a Supramolecular Shell. Chemistry - an Asian Journal, 2006, 1, 664-668.	3.3	23
172	Selective catalytic reduction of nitric oxide with propane over Ni-Al2O3: effect of Ni loading. Reaction Kinetics and Catalysis Letters, 2006, 89, 81-87.	0.6	11
173	High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO catalyst with fine silver clusters. Journal of Catalysis, 2005, 232, 424-431.	6.2	236
174	Direct synthesis of zeolite coatings on cordierite supports by in situ hydrothermal method. Applied Catalysis A: General, 2005, 292, 312-321.	4.3	52
175	selective catalytic reduction of nitrogen oxides over Cu-TS-1/cordierite and LaCu-TS-1/cordierite. Reaction Kinetics and Catalysis Letters, 2005, 84, 115-120.	0.6	1
176	Selective Catalytic Reduction of Nitrogen Oxides from Exhaust of Lean Burn Engine over In-Situ Synthesized Cuâ^'ZSM-5/Cordierite. Environmental Science & Technology, 2005, 39, 2841-2847.	10.0	38
177	selective catalytic reduction of nitrogen oxides over Cu-TS-1/cordierite and LaCu-TS-1/cordierite. Reaction Kinetics and Catalysis Letters, 2005, 84, 115-120.	0.6	1
178	Improving the Si/Al ratio of zeolite omega by boron adulteration. Studies in Surface Science and Catalysis, 2004, 154, 217-223.	1.5	0
179	Study on metal-MFI/cordierite as promising catalysts for selective catalytic reduction of nitric oxide by propane in excess oxygen. Journal of Catalysis, 2004, 228, 12-22.	6.2	37
180	Selective catalytic reduction of nitrogen oxides from exhaust of lean burn engine over in situ synthesized monolithic Cu–TS-1/cordierite. Catalysis Today, 2004, 90, 207-213.	4.4	32