Ym Liew

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765910/publications.pdf

Version: 2024-02-01

61	2,011	17	43
papers	citations	h-index	g-index
61	61	61	1380
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microbial fuel cell for simultaneous caffeine removal and bioelectricity generation under various operational conditions in the anodic and cathodic chambers. Environmental Technology and Innovation, 2022, 25, 102158.	6.1	11
2	Thin fly ash/ ladle furnace slag geopolymer: Effect of elevated temperature exposure on flexural properties and morphological characteristics. Ceramics International, 2022, 48, 16562-16575.	4.8	16
3	Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review. Materials, 2022, 15, 1948.	2.9	14
4	Thermo-mechanical behaviour of fly ash-ladle furnace slag blended geopolymer with incorporation of decahydrate borax. Construction and Building Materials, 2022, 331, 127337.	7.2	6
5	Comparison of thermal performance between fly ash geopolymer and fly ash-ladle furnace slag geopolymer. Journal of Non-Crystalline Solids, 2022, 585, 121527.	3.1	14
6	Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation. Materials, 2022, 15, 4085.	2.9	3
7	Improvements of Flexural Properties and Thermal Performance in Thin Geopolymer Based on Fly Ash and Ladle Furnace Slag Using Borax Decahydrates. Materials, 2022, 15, 4178.	2.9	10
8	Effect of phosphate addition on room-temperature-cured fly ash-metakaolin blend geopolymers. Construction and Building Materials, 2021, 270, 121486.	7.2	22
9	Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading. Polymer Bulletin, 2021, 78, 4835-4847.	3.3	15
10	Development of Ash-Based and Slag-Based Pressed Geopolymer. Lecture Notes in Civil Engineering, 2021, , 51-72.	0.4	2
11	Evaluation of the Effect of Silica Fume on Amorphous Fly Ash Geopolymers Exposed to Elevated Temperature. Magnetochemistry, 2021, 7, 9.	2.4	18
12	Optimizing of the Cementitious Composite Matrix by Addition of Steel Wool Fibers (Chopped) Based on Physical and Mechanical Analysis. Materials, 2021, 14, 1094.	2.9	8
13	Elevated-Temperature Performance, Combustibility and Fire Propagation Index of Fly Ash-Metakaolin Blend Geopolymers with Addition of Monoaluminium Phosphate (MAP) and Aluminum Dihydrogen Triphosphate (ATP). Materials, 2021, 14, 1973.	2.9	6
14	Formulation, mechanical properties and phase analysis of fly ash geopolymer with ladle furnace slag replacement. Journal of Materials Research and Technology, 2021, 12, 1212-1226.	5.8	35
15	Cold-pressed fly ash geopolymers: effect of formulation on mechanical and morphological characteristics. Journal of Materials Research and Technology, 2021, 15, 3028-3046.	5.8	15
16	Effect of anisotropic pores on the material properties of metakaolin geopolymer composites incorporated with corrugated fiberboard and rubber. Journal of Materials Research and Technology, 2021, 14, 822-834.	5.8	5
17	Evaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag. Journal of Materials Research and Technology, 2021, 15, 163-176.	5.8	25
18	Primary insights into the effects of organic pollutants and carbon-based cathode materials in a double chambered microbial fuel cell integrated electrocatalytic process. Journal of Water Process Engineering, 2021, 44, 102358.	5.6	9

#	Article	IF	CITATIONS
19	Behaviour changes of ground granulated blast furnace slag geopolymers at high temperature. Advances in Cement Research, 2020, 32, 465-475.	1.6	40
20	The Effect of Sodium Carbonate on the Fresh and Hardened Properties of Fly Ash-Based One-Part Geopolymer. IOP Conference Series: Materials Science and Engineering, 2020, 864, 012197.	0.6	4
21	Influence of Sputtering Temperature of TiO2 Deposited onto Reduced Graphene Oxide Nanosheet as Efficient Photoanodes in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 4852.	3.8	5
22	Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Construction and Building Materials, 2020, 247, 118641.	7.2	119
23	Characterization of Fly Ash and Metakaolin Blend Geopolymers under Ambient Temperature Condition. IOP Conference Series: Materials Science and Engineering, 2019, 551, 012086.	0.6	1
24	Manufacturing parameters influencing fire resistance of geopolymers: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 721-733.	1.1	14
25	Effect of Sodium Hydroxide Molarity on Physical, Mechanical and Thermal Conductivity of Metakaolin Geopolymers. IOP Conference Series: Materials Science and Engineering, 2018, 343, 012015.	0.6	21
26	The effect of various molarities of NaOH solution on fly ash geopolymer paste. AIP Conference Proceedings, 2018 , , .	0.4	6
27	Compressive strength and microstructure of fly ash and metakaolin geopolymer blend towards NaOH concentration. AIP Conference Proceedings, 2018, , .	0.4	0
28	Effect of solid-to-liquid ratios on metakaolin geopolymers. AIP Conference Proceedings, 2018, , .	0.4	9
29	Compressive strength and microstructure of fly ash and metakaolin geopolymer blend towards NaOH concentration. AIP Conference Proceedings, 2018, , .	0.4	1
30	Effect of molarity of sodium hydroxide on fly ash geopolymer tiles. AIP Conference Proceedings, 2018,	0.4	1
31	The synergetic compressive strength and microstructure of fly ash and metakaolin blend geopolymer pastes. AIP Conference Proceedings, 2018 , , .	0.4	3
32	Thermophysical Properties of Metakaolin Geopolymers Based on Na ₂ SiO ₃ /NaOH Ratio. Solid State Phenomena, 2018, 280, 487-493.	0.3	4
33	Effect of Alkali Concentration on Fly Ash Geopolymers. IOP Conference Series: Materials Science and Engineering, 2018, 343, 012013.	0.6	12
34	Thermal Resistance Variations of Fly Ash Geopolymers: Foaming Responses. Scientific Reports, 2017, 7, 45355.	3.3	103
35	The Effect of Different Ratio Bottom Ash and Fly Ash Geopolymer Brick on Mechanical Properties for Non-loading Application. MATEC Web of Conferences, 2017, 97, 01017.	0.2	3
36	Durability of metakaolin geopolymers with various sodium silicate/sodium hydroxide ratios against seawater exposure. AIP Conference Proceedings, 2017, , .	0.4	6

#	Article	IF	CITATIONS
37	Density and morphology studies on bottom ash and fly ash geopolymer brick. AIP Conference Proceedings, 2017, , .	0.4	3
38	Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder. Construction and Building Materials, 2017, 156, 9-18.	7.2	109
39	Mechanism of Cement Paste with Different Particle Sizes of Bottom Ash as Partial Replacement in Portland Cement. Revista De Chimie (discontinued), 2017, 68, 2367-2372.	0.4	7
40	Manufacturing of Fire Resistance Geopolymer: A Review. MATEC Web of Conferences, 2016, 78, 01023.	0.2	23
41	Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 2016, 83, 595-629.	32.8	371
42	Review of Geopolymer Materials for Thermal Insulating Applications. Key Engineering Materials, 2015, 660, 17-22.	0.4	14
43	Flood Mud as Geopolymer Precursor Materials: Effect of Curing Regime on Compressive Strength. Applied Mechanics and Materials, 2015, 815, 177-181.	0.2	1
44	Kaolin-based geopolymers with various NaOH concentrations. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 313-322.	4.9	84
45	Influence of Oxide Molar Ratios on Kaolin Geopolymers. Advanced Science Letters, 2013, 19, 3588-3591.	0.2	2
46	General Properties of Kaolin Geopolymers. Advanced Science Letters, 2013, 19, 153-156.	0.2	1
47	Properties of Metakaolin Geopolymeric Binder. Advanced Science Letters, 2013, 19, 157-161.	0.2	0
48	Correlating Composition Design and Properties of Calcined Kaolin Geopolymeric Powder. Advanced Science Letters, 2013, 19, 3671-3674.	0.2	1
49	Strength and Microstructural Properties of Mechanically-Activated Kaolin Geopolymers. Advanced Materials Research, 2012, 626, 926-930.	0.3	13
50	Calcined Kaolin Geopolymeric Powder: Influence of Water-to-Geopolymeric Powder Ratio. Advanced Materials Research, 2012, 548, 48-53.	0.3	1
51	Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 2012, 35, 912-922.	7.2	303
52	Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. Construction and Building Materials, 2012, 37, 440-451.	7.2	106
53	Processing and characterization of calcined kaolin cement powder. Construction and Building Materials, 2012, 30, 794-802.	7.2	146
54	Effect of Curing Profile on Kaolin-based Geopolymers. Physics Procedia, 2011, 22, 305-311.	1.2	141

YM LIEW

#	Article	IF	CITATION
55	Influence of Solids-to-liquid and Activator Ratios on Calcined Kaolin Cement Powder. Physics Procedia, 2011, 22, 312-317.	1.2	45
56	Curing Behavior on Kaolin-Based Geopolymers. Advanced Materials Research, 0, 548, 42-47.	0.3	12
57	Influence of Solidification Process on Calcined Kaolin Geopolymeric Powder. Advanced Materials Research, 0, 479-481, 286-291.	0.3	2
58	Effect of Mechanical Activation on Kaolin-Based Geopolymers. Advanced Materials Research, 0, 479-481, 357-361.	0.3	4
59	Effect of Curing Regimes on Metakaolin Geopolymer Pastes Produced from Geopolymer Powder. Advanced Materials Research, 0, 626, 931-936.	0.3	6
60	Flood Mud as Geopolymer Precursor Materials: Effect of Flood Mud/Alkaline Activator and Na ₂ SiO ₃ /NaOH Ratios on Compressive Strength. Applied Mechanics and Materials, 0, 815, 170-176.	0.2	0
61	Clay-Based Materials in Geopolymer Technology. , 0, , .		30