Jean Vannier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7659012/publications.pdf

Version: 2024-02-01

516561 610775 1,038 24 16 24 h-index citations g-index papers 26 26 26 619 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Muscle systems and motility of early animals highlighted by cnidarians from the basal Cambrian. ELife, 2022, 11, .	2.8	8
2	Priapulid worms from the Cambrian of China shed light on reproduction in early animals. Geoscience Frontiers, 2021, 12, 101234.	4.3	6
3	Cuticular reticulation replicates the pattern of epidermal cells in lowermost Cambrian scalidophoran worms. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200470.	1.2	9
4	Evolutionary trade-off in reproduction of Cambrian arthropods. Science Advances, 2020, 6, eaaz3376.	4.7	16
5	An intermediate type of medusa from the early Cambrian Kuanchuanpu Formation, South China. Palaeontology, 2020, 63, 775-789.	1.0	9
6	Origin of ecdysis: fossil evidence from 535-million-year-old scalidophoran worms. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190791.	1.2	18
7	Collective behaviour in 480-million-year-old trilobite arthropods from Morocco. Scientific Reports, 2019, 9, 14941.	1.6	20
8	X-ray microtomography applied to fossils preserved in compression: Palaeoscolescid worms from the Lower Ordovician Fezouata Shale. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 508, 48-58.	1.0	12
9	<i>Waptia fieldensis</i> Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. Royal Society Open Science, 2018, 5, 172206.	1.1	51
10	Worm-lobopodian assemblages from the Early Cambrian Chengjiang biota: Insight into the "pre-arthropodan ecology�. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468, 373-387.	1.0	18
11	Anatomy and affinities of a new 535â€millionâ€yearâ€old medusozoan from the Kuanchuanpu Formation, South China. Palaeontology, 2017, 60, 853-867.	1.0	17
12	Palaeoscolecid worms from the Lower Ordovician Fezouata LagerstÃ#te, Morocco: Palaeoecological and palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 460, 130-141.	1.0	25
13	Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nature Communications, 2016, 7, 10320.	5.8	57
14	Waptia and the Diversification of Brood Care in Early Arthropods. Current Biology, 2016, 26, 69-74.	1.8	44
15	Reconstructing the diet of a 505-million-year-old arthropod: Sidneyia inexpectans from the Burgess Shale fauna. Arthropod Structure and Development, 2016, 45, 200-220.	0.8	67
16	The Lower Ordovician Fezouata Konservat-Lagerst \tilde{A} the from Morocco: Age, environment and evolutionary perspectives. Gondwana Research, 2016, 34, 274-283.	3.0	80
17	Sophisticated digestive systems in early arthropods. Nature Communications, 2014, 5, 3641.	5.8	97
18	Gut Contents as Direct Indicators for Trophic Relationships in the Cambrian Marine Ecosystem. PLoS ONE, 2012, 7, e52200.	1.1	93

#	Article	IF	CITATIONS
19	Oxygen as a Driver of Early Arthropod Micro-Benthos Evolution. PLoS ONE, 2011, 6, e28183.	1.1	29
20	Priapulid worms: Pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology, 2010, 38, 711-714.	2.0	128
21	Recent Priapulidae and their Early Cambrian ancestors: comparisons and evolutionary significance. Geobios, 2004, 37, 217-228.	0.7	64
22	Anatomy and lifestyles of Early Cambrian priapulid worms exemplified by Corynetis and Anningvermis from the Maotianshan Shale (SW China). Lethaia, 2004, 37, 21-33.	0.6	61
23	Digestive system and feeding mode in Cambrian naraoiid arthropods. Lethaia, 2002, 35, 107-120.	0.6	66
24	Locomotion in <i>Nebalia bipes</i> : a possible model for Palaeozoic phyllocarid crustaceans. Lethaia, 1997, 30, 89-104.	0.6	43