
Wenke Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7658993/publications.pdf Version: 2024-02-01

WENKELL

#	Article	IF	CITATIONS
1	Compensated SAW Yarn Tension Sensor. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 3162-3168.	4.7	19
2	Malware visualization methods based on deep convolution neural networks. Multimedia Tools and Applications, 2020, 79, 10975-10993.	3.9	19
3	Chattering-Suppressed Sliding Mode Control for Flexible-Joint Robot Manipulators. Actuators, 2021, 10, 288.	2.3	18
4	Study of the Doubly Clamped Beam Yarn Tension Sensor Based on the Surface Acoustic Wave. IEEE Transactions on Industrial Electronics, 2019, 66, 3256-3264.	7.9	15
5	Implementing wavelet inverse-transform processor with surface acoustic wave device. Ultrasonics, 2013, 53, 447-454.	3.9	13
6	A novel optimal sensitivity design scheme for yarn tension sensor using surface acoustic wave device. Ultrasonics, 2014, 54, 1649-1655.	3.9	11
7	Solution to the influence of the MSSW propagating velocity on the bandwidths of the single-scale wavelet-transform processor using MSSW device. Ultrasonics, 2012, 52, 145-150.	3.9	10
8	Transfer Function of Interfacial Stress Sensor for Artificial Skin Applications. IEEE Transactions on Electron Devices, 2013, 60, 2640-2647.	3.0	10
9	Temperature compensation of the SAW yarn tension sensor. Ultrasonics, 2017, 76, 87-91.	3.9	10
10	Optimization of Sensitivity Induced by Substrate Strain Rate for Surface Acoustic Wave Yarn Tension Sensor. IEEE Sensors Journal, 2015, 15, 4769-4776.	4.7	9
11	Fitting analysis and research of measured data of SAW yarn tension sensor based on PSO–SVR model. Ultrasonics, 2021, 116, 106511.	3.9	9
12	A novel electrodeâ€areaâ€weighted method of implementing wavelet transform processor with surface acoustic wave device. International Journal of Circuit Theory and Applications, 2016, 44, 2134-2146.	2.0	8
13	Effect of IDT position parameters on SAW yarn tension sensor sensitivity. Measurement and Control, 2020, 53, 2055-2062.	1.8	8
14	Implementing single-scale wavelet transform processor with magnetostatic surface wave device. Science China Technological Sciences, 2011, 54, 1439-1444.	4.0	6
15	Research on two-port network of wavelet transform processor using surface acoustic wavelet devices and its application. Ultrasonics, 2017, 81, 81-85.	3.9	6
16	A novel compensation method of insertion losses for wavelet inverse-transform processors using surface acoustic wave devices. Review of Scientific Instruments, 2011, 82, 115003.	1.3	5
17	Study on the Practical Application of Surface Acoustic Wave Yarn Tension Sensor. IEEE Transactions on Industrial Electronics, 2022, 69, 13781-13790.	7.9	5
18	Circuit Design of Surface Acoustic Wave Based Micro Force Sensor. Mathematical Problems in Engineering, 2014, 2014, 1-9.	1.1	2

Wenke Lu

#	Article	IF	CITATIONS
19	Manufacturing error correction model of the wavelet transform processor using surface acoustic wave devices. IEICE Electronics Express, 2017, 14, 20170344-20170344.	0.8	2
20	Space Filling Curve Mapping for Malware Detection and Classification. , 2020, , .		2
21	Methods of Solving Passband Ripples and Sidelobes for Wavelet Transform Processor Using Surface Acoustic Wave Device. IEEE Transactions on Industrial Electronics, 2022, , 1-1.	7.9	2
22	Saturated Output Feedback Control for Robot Manipulators with Joints of Arbitrary Flexibility. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2022, , .	1.6	1
23	Design and fabrication of low loss and high suppression monolithic inverse wavelet transform processor. IEICE Electronics Express, 2014, 11, 20140665-20140665.	0.8	0
24	Surface acoustic wave type electrodeâ€areaâ€weighted wavelet inverseâ€ŧransform processors with phase compensation. IET Circuits, Devices and Systems, 2017, 11, 624-630.	1.4	0
25	Byte Visualization Method for Malware Classification. , 2020, , .		0