
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7658903/publications.pdf Version: 2024-02-01



ΔλρονΙ Ρτλκ

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Performance of Ill–V Solar Cells Grown on Reformed Mesoporous Ge Templates. IEEE Journal of<br>Photovoltaics, 2022, 12, 337-343.                                                    | 2.5  | 5         |
| 2  | Controlled spalling of (100)-oriented GaAs with a nanoimprint lithography interlayer for thin-film layer transfer without facet formation. Thin Solid Films, 2022, 742, 139049.     | 1.8  | 4         |
| 3  | (110)-Oriented GaAs Devices and Spalling as a Platform for Low-Cost III-V Photovoltaics. IEEE Journal of<br>Photovoltaics, 2022, 12, 962-967.                                       | 2.5  | 2         |
| 4  | Highâ€Efficiency Solar Cells Grown on Spalled Germanium for Substrate Reuse without Polishing.<br>Advanced Energy Materials, 2022, 12, .                                            | 19.5 | 12        |
| 5  | Consideration of the Intricacies Inherent in Molecular Beam Epitaxy of the NaCl/GaAs System. ACS<br>Omega, 2022, 7, 24353-24364.                                                    | 3.5  | 1         |
| 6  | Compositionally graded Ga1â^'xInxP buffers grown by static and dynamic hydride vapor phase epitaxy at<br>rates up to 1 <i>l¼</i> m/min. Applied Physics Letters, 2021, 118, .       | 3.3  | 4         |
| 7  | Facet Suppression in (100) GaAs spalling via use of a Nanoimprint Lithography Release Layer. , 2021, , .                                                                            |      | 0         |
| 8  | Recent HVPE grown solar cells at NREL. , 2021, , .                                                                                                                                  |      | 2         |
| 9  | Control of Surface Morphology during the Growth of (110)-Oriented GaAs by Hydride Vapor Phase<br>Epitaxy. Crystal Growth and Design, 2021, 21, 3916-3921.                           | 3.0  | 3         |
| 10 | Planarization of Rough (100) GaAs Substrates via Growth by Hydride Vapor Phase Epitaxy. , 2021, , .                                                                                 |      | 2         |
| 11 | (110)-Oriented GaAs Devices and Spalling as a Platform for Low-Cost III-V Photovoltaics. , 2021, , .                                                                                |      | 2         |
| 12 | Effect of Doping Density on the Performance of Metamorphic GaInAs Solar Cells Grown by Dynamic<br>Hydride Vapor Phase Epitaxy. , 2021, , .                                          |      | 0         |
| 13 | Inverted metamorphic GaInAs solar cell grown by dynamic hydride vapor phase epitaxy. Applied Physics<br>Letters, 2021, 119, .                                                       | 3.3  | 4         |
| 14 | Surface chemistry models for GaAs epitaxial growth and hydride cracking using reacting flow simulations. Journal of Applied Physics, 2021, 130, 115702.                             | 2.5  | 1         |
| 15 | Dopant Diffusion Control for Improved Tandem Cells Grown by D-HVPE. IEEE Journal of Photovoltaics, 2021, 11, 1251-1255.                                                             | 2.5  | 3         |
| 16 | Effect of hydride vapor phase epitaxy growth conditions on the degree of atomic ordering in GalnP.<br>Journal of Applied Physics, 2020, 128, .                                      | 2.5  | 3         |
| 17 | Patterning Metal Grids for GaAs Solar Cells with Cracked Film Lithography: Quantifying the<br>Cost/Performance Tradeoff. ACS Applied Materials & Interfaces, 2020, 12, 41471-41476. | 8.0  | 10        |
| 18 | GaAs growth rates of 528 <b>μ</b> m/h using dynamic-hydride vapor phase epitaxy with a nitrogen<br>carrier gas. Applied Physics Letters, 2020, 116, .                               | 3.3  | 14        |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The 2020 photovoltaic technologies roadmap. Journal Physics D: Applied Physics, 2020, 53, 493001.                                                                         | 2.8  | 274       |
| 20 | GaAs solar cells grown on intentionally contaminated GaAs substrates. Journal of Crystal Growth, 2020, 541, 125668.                                                       | 1.5  | 6         |
| 21 | GaAs Substrate Recycling Using in-situ Deposited NaCl Layers via Molecular Beam Epitaxy. , 2020, , .                                                                      |      | 0         |
| 22 | GaAs solar cells grown on intentionally contaminated GaAs substrates. , 2020, , .                                                                                         |      | 0         |
| 23 | GaAs Solar Cell Grown by Dynamic Hydride Vapor Phase Epitaxy Using Nitrogen Carrier Gas. , 2020, , .                                                                      |      | 0         |
| 24 | Improved contacts for tandem cells with enhanced effciency grown by D-HVPE. , 2020, , .                                                                                   |      | 0         |
| 25 | Gallium arsenide solar cells grown at rates exceeding 300 µm hâ^'1 by hydride vapor phase epitaxy.<br>Nature Communications, 2019, 10, 3361.                              | 12.8 | 61        |
| 26 | Germanium-on-Nothing for Epitaxial Liftoff of GaAs Solar Cells. Joule, 2019, 3, 1782-1793.                                                                                | 24.0 | 41        |
| 27 | Carrier-Transport Study of Gallium Arsenide Hillock Defects. Microscopy and Microanalysis, 2019, 25, 1160-1166.                                                           | 0.4  | 4         |
| 28 | III-V-Based Optoelectronics with Low-Cost Dynamic Hydride Vapor Phase Epitaxy. Crystals, 2019, 9, 3.                                                                      | 2.2  | 42        |
| 29 | Uniformity of GaAs solar cells grown in a kinetically-limited regime by dynamic hydride vapor phase<br>epitaxy. Solar Energy Materials and Solar Cells, 2019, 197, 84-92. | 6.2  | 7         |
| 30 | Toward Low-Cost 4-Terminal GaAs//Si Tandem Solar Cells. ACS Applied Energy Materials, 2019, 2, 2375-2380.                                                                 | 5.1  | 17        |
| 31 | Analysis of GaAs Solar Cells Grown on 50 mm Wafers at 700 °C by Dynamic Hydride Vapor Phase<br>Epitaxy. , 2019, , .                                                       |      | Ο         |
| 32 | Reformed Mesoporous Ge for Substrate Reuse in III-V Solar Cells. , 2019, , .                                                                                              |      | 5         |
| 33 | Growth of AlGaAs, AlInP, and AlGaInP by Hydride Vapor Phase Epitaxy. ACS Applied Energy Materials, 2019, 2, 8405-8410.                                                    | 5.1  | 19        |
| 34 | Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating.<br>Thin Solid Films, 2018, 649, 154-159.                            | 1.8  | 13        |
| 35 | High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides.<br>Applied Physics Letters, 2018, 112, .                               | 3.3  | 22        |
| 36 | Tunnel Junction Development Using Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8, 322-326.                                                           | 2.5  | 13        |

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | GaAs Solar Cells Grown on Unpolished, Spalled Ge Substrates. , 2018, , .                                                                                                                                  |     | 4         |
| 38 | Improvement of Short-Circuit Current Density in GaInP Solar Cells Grown by Dynamic Hydride Vapor<br>Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8, 1616-1620.                                     | 2.5 | 8         |
| 39 | HVPE-Grown GaAs//Si Tandem Device Performance. , 2018, , .                                                                                                                                                |     | Ο         |
| 40 | Tunable Bandgap GaInAsP Solar Cells With 18.7% Photoconversion Efficiency Synthesized by Low-Cost<br>and High-Growth Rate Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8, 1577-1583. | 2.5 | 13        |
| 41 | III–V Solar Cells Grown on Unpolished and Reusable Spalled Ge Substrates. IEEE Journal of<br>Photovoltaics, 2018, 8, 1384-1389.                                                                           | 2.5 | 11        |
| 42 | Multijunction Ga <sub>0.5</sub> In <sub>0.5</sub> P/GaAs solar cells grown by dynamic hydride vapor phase epitaxy. Progress in Photovoltaics: Research and Applications, 2018, 26, 887-893.               | 8.1 | 33        |
| 43 | Development of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy. IEEE Journal of<br>Photovoltaics, 2017, 7, 1153-1158.                                                                              | 2.5 | 23        |
| 44 | Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy. IEEE<br>Journal of Photovoltaics, 2017, 7, 157-161.                                                           | 2.5 | 36        |
| 45 | Near-field transport imaging application of photovoltaic materials. , 2017, , .                                                                                                                           |     | 0         |
| 46 | Notice of Removal Upright and inverted single junction GaAs solar cells grown by hydride vapor phase epitaxy. , 2017, , .                                                                                 |     | 1         |
| 47 | Analysis of GaInP Solar Cells Grown by Hydride Vapor Phase Epitaxy. , 2017, , .                                                                                                                           |     | 0         |
| 48 | GaLnAsP Solar Cells Grown by Hydride Vapor Phase Epitaxy for One-Sun & Low-Concentration III-V/Si<br>Photovoltaics. , 2017, , .                                                                           |     | 0         |
| 49 | Controlled exfoliation of (100) GaAs-based devices by spalling fracture. Applied Physics Letters, 2016, 108, .                                                                                            | 3.3 | 60        |
| 50 | InGaAsP solar cells grown by hydride vapor phase epitaxy. , 2016, , .                                                                                                                                     |     | 6         |
| 51 | A kinetic model for GaAs growth by hydride vapor phase epitaxy. , 2016, , .                                                                                                                               |     | 4         |
| 52 | Computational fluid dynamics-aided analysis of a hydride vapor phase epitaxy reactor. Journal of<br>Crystal Growth, 2016, 434, 138-147.                                                                   | 1.5 | 26        |
| 53 | GaAs Solar Cells Grown by Hydride Vapor-Phase Epitaxy and the Development of GaInP Cladding Layers.<br>IEEE Journal of Photovoltaics, 2016, 6, 191-195.                                                   | 2.5 | 37        |
| 54 | Low cost GaAs solar cells grown by hydride vapor phase epitaxy and the development of GaInP                                                                                                               |     | 4         |

cladding layers. , 2015, , .

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modeling of gas curtains in a dual chamber hydride vapor phase epitaxial photovoltaic growth reactor. , 2015, , .                                                              |     | 3         |
| 56 | Effect of material choice on spalling fracture parameters to exfoliate thin PV devices. , 2014, , .                                                                            |     | 1         |
| 57 | Low-cost III–V solar cells grown by hydride vapor-phase epitaxy. , 2014, , .                                                                                                   |     | 26        |
| 58 | Atomic ordering and phase separation in MBE GaAs1â <sup>~,</sup> xBix. Journal of Vacuum Science and Technology<br>B:Nanotechnology and Microelectronics, 2011, 29, 03C121.    | 1.2 | 53        |
| 59 | Low-misfit epilayer analyses using <i>in situ</i> wafer curvature measurements. Journal of Vacuum<br>Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, . | 1.2 | 8         |
| 60 | Defect characterization by admittance spectroscopy techniques based on temperature-rate duality. ,<br>2010, , .                                                                |     | 0         |
| 61 | Dominant recombination centers in Ga(In)NAs alloys: Ga interstitials. Applied Physics Letters, 2009, 95, .                                                                     | 3.3 | 57        |
| 62 | Comparison of the dilute bismide and nitride alloys GaAsBi and GaAsN. Physica Status Solidi (B): Basic<br>Research, 2009, 246, 504-507.                                        | 1.5 | 15        |
| 63 | Dilute nitride GalnNAs and GalnNAsSb solar cells by molecular beam epitaxy. Journal of Applied Physics, 2007, 101, 114916.                                                     | 2.5 | 192       |
| 64 | GaInNAsSb Solar Cells Grown by Molecular Beam Epitaxy. , 2006, , .                                                                                                             |     | 1         |
| 65 | Monolithic, Ultra-Thin GaInP/GaAs/GaInAs Tandem Solar Cells. , 2006, , .                                                                                                       |     | 11        |