Hong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765888/publications.pdf

Version: 2024-02-01

260 papers 16,736 citations

71
h-index

22166 113 g-index

264 all docs

264 docs citations

times ranked

264

10528 citing authors

#	Article	IF	CITATIONS
1	Advances in high permeability polymer-based membrane materials for CO ₂ separations. Energy and Environmental Science, 2016, 9, 1863-1890.	30.8	612
2	Nanostructured Ionâ€Exchange Membranes for Fuel Cells: Recent Advances and Perspectives. Advanced Materials, 2015, 27, 5280-5295.	21.0	335
3	Efficient CO ₂ Capture by Functionalized Graphene Oxide Nanosheets as Fillers To Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5528-5537.	8.0	305
4	Methods for the regeneration of nicotinamide coenzymes. Green Chemistry, 2013, 15, 1773.	9.0	278
5	Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10, 2101.	12.8	271
6	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultra‣ongâ€Life Aqueous Zinc Metal Anodes. Angewandte Chemie - International Edition, 2020, 59, 16594-16601.	13.8	270
7	Covalent organic framework modified polyamide nanofiltration membrane with enhanced performance for desalination. Journal of Membrane Science, 2017, 523, 273-281.	8.2	259
8	Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 2013, 1, 10058.	10.3	252
9	Two-dimensional nanochannel membranes for molecular and ionic separations. Chemical Society Reviews, 2020, 49, 1071-1089.	38.1	242
10	Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. Journal of Membrane Science, 2019, 576, 131-141.	8.2	238
11	Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460, 62-70.	8.2	223
12	Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479, 1-10.	8.2	219
13	Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44, 103-118.	38.1	211
14	Weakly Humidityâ€Dependent Protonâ€Conducting COF Membranes. Advanced Materials, 2020, 32, e2005565.	21.0	201
15	Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. Journal of Membrane Science, 2014, 465, 78-90.	8.2	196
16	A highly permeable graphene oxide membrane with fast and selective transport nanochannels for efficient carbon capture. Energy and Environmental Science, 2016, 9, 3107-3112.	30.8	192
17	Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation. Journal of Membrane Science, 2017, 528, 273-283.	8.2	177
18	Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523, 185-196.	8.2	176

#	Article	IF	Citations
19	Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39, 1668-1720.	24.7	174
20	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	8.2	174
21	Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. Journal of Materials Chemistry A, 2019, 7, 25641-25649.	10.3	173
22	Enhanced Proton Conductivity of Nafion Hybrid Membrane under Different Humidities by Incorporating Metal–Organic Frameworks With High Phytic Acid Loading. ACS Applied Materials & Samp; Interfaces, 2014, 6, 9799-9807.	8.0	172
23	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	38.1	170
24	Enhanced Interfacial Interaction and CO ₂ Separation Performance of Mixed Matrix Membrane by Incorporating Polyethylenimine-Decorated Metal–Organic Frameworks. ACS Applied Materials & Decorated Metal†amp; Interfaces, 2015, 7, 1065-1077.	8.0	162
25	Solid–Vapor Interface Engineered Covalent Organic Framework Membranes for Molecular Separation. Journal of the American Chemical Society, 2020, 142, 13450-13458.	13.7	161
26	Enhancing the CO ₂ separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry A, 2015, 3, 6629-6641.	10.3	152
27	Enhancement of Proton Conduction at Low Humidity by Incorporating Imidazole Microcapsules into Polymer Electrolyte Membranes. Advanced Functional Materials, 2012, 22, 4539-4546.	14.9	135
28	Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. Journal of Membrane Science, 2018, 548, 309-318.	8.2	130
29	De Novo Design of Covalent Organic Framework Membranes toward Ultrafast Anion Transport. Advanced Materials, 2020, 32, e2001284.	21.0	130
30	Fabrication of electro-neutral nanofiltration membranes at neutral pH with antifouling surface via interfacial polymerization from a novel zwitterionic amine monomer. Journal of Membrane Science, 2016, 503, 101-109.	8.2	126
31	Efficient Conversion of CO2 to Methanol Catalyzed by Three Dehydrogenases Co-encapsulated in an Alginateâ ⁻ Silica (ALGâ ⁻ SiO2) Hybrid Gel. Industrial & Engineering Chemistry Research, 2006, 45, 4567-4573.	3.7	122
32	Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. Journal of Membrane Science, 2017, 544, 79-87.	8.2	121
33	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie - International Edition, 2017, 56, 14246-14251.	13.8	121
34	Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction. ACS Catalysis, 2014, 4, 962-972.	11.2	120
35	Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy and Environmental Science, 2014, 7, 1489.	30.8	119
36	Enhanced proton conductivity of proton exchange membranes by incorporating sulfonated metal-organic frameworks. Journal of Power Sources, 2014, 262, 372-379.	7.8	117

#	Article	IF	CITATIONS
37	Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell. Journal of Power Sources, 2007, 173, 842-852.	7.8	114
38	Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells. Electrochimica Acta, 2016, 203, 178-188.	5.2	113
39	Constructing efficient ion nanochannels in alkaline anion exchange membranes by the in situ assembly of a poly(ionic liquid) in metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 2340-2348.	10.3	113
40	Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520, 583-595.	8.2	107
41	Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles. Journal of Membrane Science, 2017, 540, 454-463.	8.2	107
42	Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. Journal of Membrane Science, 2016, 518, 243-253.	8.2	106
43	Membraneâ€Based Olefin/Paraffin Separations. Advanced Science, 2020, 7, 2001398.	11.2	105
44	Metal-coordinated sub-10 nm membranes for water purification. Nature Communications, 2019, 10, 4160.	12.8	104
45	High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. Journal of Membrane Science, 2014, 469, 198-208.	8.2	103
46	Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. Journal of Membrane Science, 2016, 514, 15-24.	8.2	103
47	Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry A, 2018, 6, 583-591.	10.3	103
48	Enhanced proton conductivity of Nafion composite membrane by incorporating phosphoric acid-loaded covalent organic framework. Journal of Power Sources, 2016, 332, 265-273.	7.8	102
49	Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO2 separation. Journal of Membrane Science, 2017, 522, 351-362.	8.2	102
50	Ion Selective Covalent Organic Framework Enabling Enhanced Electrochemical Performance of Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 2997-3006.	9.1	102
51	Tunable Nanochannels along Graphene Oxide/Polymer Core–Shell Nanosheets to Enhance Proton Conductivity. Advanced Functional Materials, 2015, 25, 7502-7511.	14.9	97
52	Graphene quantum dot engineered ultrathin loose polyamide nanofilms for high-performance nanofiltration. Journal of Materials Chemistry A, 2020, 8, 23930-23938.	10.3	95
53	Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone). Journal of Power Sources, 2015, 288, 384-392.	7.8	93
54	Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal–organic framework for gas separation. Journal of Membrane Science, 2015, 488, 67-78.	8.2	91

#	Article	IF	Citations
55	Embedding dopamine nanoaggregates into a poly(dimethylsiloxane) membrane to confer controlled interactions and free volume for enhanced separation performance. Journal of Materials Chemistry A, 2013, 1, 3713.	10.3	90
56	Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46, 6725-6745.	38.1	90
57	Graphitic carbon nitride nanosheets/sulfonated poly(ether ether ketone) nanocomposite membrane for direct methanol fuel cell application. Journal of Membrane Science, 2016, 507, 1-11.	8.2	88
58	Multifunctional covalent organic framework (COF)-Based mixed matrix membranes for enhanced CO2 separation. Journal of Membrane Science, 2021, 618, 118693.	8.2	88
59	Preparation of ultrathin, robust membranes through reactive layer-by-layer (LbL) assembly for pervaporation dehydration. Journal of Membrane Science, 2017, 537, 229-238.	8.2	87
60	Enhancing the interfacial stability and solvent-resistant property of PDMS/PES composite membrane by introducing a bifunctional aminosilane. Journal of Membrane Science, 2009, 337, 61-69.	8.2	86
61	Composite proton conductive membranes composed of sulfonated poly(ether ether ketone) and phosphotungstic acid-loaded imidazole microcapsules as acid reservoirs. Journal of Membrane Science, 2014, 451, 74-84.	8.2	84
62	Functionalized Carbon Nanotube via Distillation Precipitation Polymerization and Its Application in Nafion-Based Composite Membranes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15291-15301.	8.0	84
63	SPEEK/amine-functionalized TiO2 submicrospheres mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2014, 467, 23-35.	8.2	84
64	Protamine-Templated Biomimetic Hybrid Capsules: Efficient and Stable Carrier for Enzyme Encapsulation. Chemistry of Materials, 2008, 20, 1041-1048.	6.7	81
65	Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels. Advanced Materials, 2017, 29, 1605898.	21.0	81
66	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie - International Edition, 2021, 60, 18051-18058.	13.8	81
67	Significant increase of permeation flux and selectivity of poly(vinyl alcohol) membranes by incorporation of crystalline flake graphite. Journal of Membrane Science, 2005, 259, 65-73.	8.2	80
68	Metal–Organic Coordination-Enabled Layer-by-Layer Self-Assembly to Prepare Hybrid Microcapsules for Efficient Enzyme Immobilization. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3476-3483.	8.0	80
69	Proton exchange nanohybrid membranes with high phosphotungstic acid loading within metal-organic frameworks for PEMFC applications. Electrochimica Acta, 2017, 240, 186-194.	5.2	80
70	Assembling covalent organic framework membranes with superior ion exchange capacity. Nature Communications, 2022, 13, 1020.	12.8	79
71	Mussel-inspired fabrication of structurally stable chitosan/polyacrylonitrile composite membrane for pervaporation dehydration. Journal of Membrane Science, 2010, 348, 150-159.	8.2	75
72	Independent control of water retention and acid–base pairing through double-shelled microcapsules to confer membranes with enhanced proton conduction under low humidity. Journal of Materials Chemistry A, 2013, 1, 2267-2277.	10.3	74

#	Article	IF	CITATIONS
73	Enhanced CO ₂ Permeability of Membranes by Incorporating Polyzwitterion@CNT Composite Particles into Polyimide Matrix. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13051-13060.	8.0	73
74	Heterobimetallic metal–organic framework nanocages as highly efficient catalysts for CO ₂ conversion under mild conditions. Journal of Materials Chemistry A, 2018, 6, 2964-2973.	10.3	73
75	Highly water-selective membranes based on hollow covalent organic frameworks with fast transport pathways. Journal of Membrane Science, 2018, 565, 331-341.	8.2	73
76	Precise nanopore tuning for a high-throughput desalination membrane <i>via</i> co-deposition of dopamine and multifunctional POSS. Journal of Materials Chemistry A, 2018, 6, 13191-13202.	10.3	73
77	Photoregeneration of NADH Using Carbon-Containing TiO2. Industrial & Engineering Chemistry Research, 2005, 44, 4165-4170.	3.7	72
78	Sulfonated poly(ether ether ketone)/amino-acid functionalized titania hybrid proton conductive membranes. Journal of Power Sources, 2012, 213, 83-92.	7.8	72
79	Mixed Nanosheet Membranes Assembled from Chemically Grafted Graphene Oxide and Covalent Organic Frameworks for Ultra-high Water Flux. ACS Applied Materials & Diterfaces, 2019, 11, 28978-28986.	8.0	72
80	Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity. Journal of Membrane Science, 2018, 568, 1-9.	8.2	70
81	Fabrication of sulfonated poly(ether ether ketone)-based hybrid proton-conducting membranes containing carboxyl or amino acid-functionalized titania by in situ sol–gel process. Journal of Power Sources, 2015, 276, 271-278.	7.8	69
82	Facilitating Proton Transport in Nafion-Based Membranes at Low Humidity by Incorporating Multifunctional Graphene Oxide Nanosheets. ACS Applied Materials & Samp; Interfaces, 2017, 9, 27676-27687.	8.0	67
83	Electrostatic-modulated interfacial polymerization toward ultra-permselective nanofiltration membranes. IScience, 2021, 24, 102369.	4.1	67
84	Constructing facile proton-conduction pathway within sulfonated poly(ether ether ketone) membrane by incorporating poly(phosphonic acid)/silica nanotubes. Journal of Power Sources, 2014, 259, 203-212.	7.8	65
85	High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. Journal of Membrane Science, 2015, 495, 72-80.	8.2	65
86	Fabrication of hybrid membranes by incorporating acid–base pair functionalized hollow mesoporous silica for enhanced proton conductivity. Journal of Materials Chemistry A, 2015, 3, 16079-16088.	10.3	63
87	Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells. Journal of Power Sources, 2015, 273, 544-553.	7.8	63
88	Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angewandte Chemie - International Edition, 2021, 60, 17638-17646.	13.8	63
89	Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. Journal of Power Sources, 2010, 195, 4104-4113.	7.8	62
90	Janus composite nanoparticle-incorporated mixed matrix membranes for CO 2 separation. Journal of Membrane Science, 2015, 489, 1-10.	8.2	62

#	Article	IF	CITATIONS
91	Metabolites from Bufo gargarizans (Cantor, 1842): A review of traditional uses, pharmacological activity, toxicity and quality control. Journal of Ethnopharmacology, 2020, 246, 112178.	4.1	62
92	Covalent Organic Framework Nanosheets as Reactive Fillers To Fabricate Free-Standing Polyamide Membranes for Efficient Desalination. ACS Applied Materials & Interfaces, 2020, 12, 27777-27785.	8.0	62
93	Embedding Ag + @COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552, 1-12.	8.2	61
94	Enhanced CO2 selectivities by incorporating CO2-philic PEC-POSS into polymers of intrinsic microporosity membrane. Journal of Membrane Science, 2017, 543, 69-78.	8.2	60
95	Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. Journal of Membrane Science, 2018, 567, 272-280.	8.2	60
96	Preparation of anion exchange membrane with enhanced conductivity and alkaline stability by incorporating ionic liquid modified carbon nanotubes. Journal of Membrane Science, 2019, 573, 1-10.	8.2	58
97	Bioadhesion-inspired polymer–inorganic nanohybrid membranes with enhanced CO2 capture properties. Journal of Materials Chemistry, 2012, 22, 19617.	6.7	57
98	Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. Journal of Membrane Science, 2018, 555, 146-156.	8.2	57
99	Constructing inorganic shell onto LBL microcapsule through biomimetic mineralization: A novel and facile method for fabrication of microbioreactors. Soft Matter, 2010, 6, 542-550.	2.7	56
100	Manipulation of interactions at membrane interfaces for energy and environmental applications. Progress in Polymer Science, 2018, 80, 125-152.	24.7	56
101	Lamellar porous vermiculite membranes for boosting nanofluidic osmotic energy conversion. Journal of Materials Chemistry A, 2021, 9, 14576-14581.	10.3	56
102	Graphene oxide quantum dots incorporated nanocomposite membranes with high water flux for pervaporative dehydration. Journal of Membrane Science, 2018, 563, 903-913.	8.2	55
103	COF membranes with uniform and exchangeable facilitated transport carriers for efficient carbon capture. Journal of Materials Chemistry A, 2021, 9, 12636-12643.	10.3	55
104	Synthesis and characterization of g-C ₃ N ₄ nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties. RSC Advances, 2016, 6, 112148-112157.	3.6	54
105	<i>110th Anniversary: </i> Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Industrial & Se	3.7	54
106	Dopamine-Modified Alginate Beads Reinforced by Cross-Linking via Titanium Coordination or Self-Polymerization and Its Application in Enzyme Immobilization. Industrial & Discrete Engineering Chemistry Research, 2013, 52, 14828-14836.	3.7	53
107	Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading. Journal of Membrane Science, 2020, 602, 117970.	8.2	53
108	Modification of covalent organic frameworks with dual functions ionic liquids for membrane-based biogas upgrading. Journal of Membrane Science, 2020, 600, 117841.	8.2	53

#	Article	IF	CITATIONS
109	Fabrication of chitosan/zwitterion functionalized titania–silica hybrid membranes with improved proton conductivity. Journal of Membrane Science, 2014, 469, 355-363.	8.2	52
110	An Interfaceâ€Bridged Organic–Inorganic Layer that Suppresses Dendrite Formation and Side Reactions for Ultraâ€Longâ€Life Aqueous Zinc Metal Anodes. Angewandte Chemie, 2020, 132, 16737-16744.	2.0	52
111	Zwitterionic functionalized "cage-like―porous organic frameworks for nanofiltration membrane with high efficiency water transport channels and anti-fouling property. Journal of Membrane Science, 2018, 548, 194-202.	8.2	51
112	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 27078-27085.	13.8	51
113	Control of Edge/in-Plane Interactions toward Robust, Highly Proton Conductive Graphene Oxide Membranes. ACS Nano, 2019, 13, 10366-10375.	14.6	50
114	Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. Journal of Membrane Science, 2015, 488, 13-29.	8.2	49
115	A highly proton-conducting, methanol-blocking Nafion composite membrane enabled by surface-coating crosslinked sulfonated graphene oxide. Chemical Communications, 2016, 52, 2173-2176.	4.1	49
116	Zwitterionic Microcapsules as Water Reservoirs and Proton Carriers within a Nafion Membrane To Confer High Proton Conductivity under Low Humidity. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5362-5366.	8.0	48
117	Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether) Tj ETQq1 1 0.784 hydrophilicity–hydrophobicity. Journal of Power Sources, 2014, 248, 951-961.	4314 rgBT 7.8	/Overlock 48
118	Coordination-Enabled One-Step Assembly of Ultrathin, Hybrid Microcapsules with Weak pH-Response. ACS Applied Materials & Distriction (2015), 7, 9178-9184.	8.0	48
119	Graphene Oxideâ€Based Solid Electrolytes with 3D Prepercolating Pathways for Efficient Proton Transport. Advanced Functional Materials, 2018, 28, 1804944.	14.9	48
120	High-efficiency water-selective membranes from the solution-diffusion synergy of calcium alginate layer and covalent organic framework (COF) layer. Journal of Membrane Science, 2019, 572, 557-566.	8.2	48
121	Homointerface covalent organic framework membranes for efficient desalination. Journal of Materials Chemistry A, 2021, 9, 23178-23187.	10.3	48
122	Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473, 310-317.	8.2	47
123	Modulating interfacial polymerization with phytate as aqueous-phase additive for highly-permselective nanofiltration membranes. Journal of Membrane Science, 2022, 657, 120673.	8.2	47
124	Enhanced Proton Conductivity of Sulfonated Polysulfone Membranes under Low Humidity via the Incorporation of Multifunctional Graphene Oxide. ACS Applied Nano Materials, 2019, 2, 4734-4743.	5.0	46
125	Constructing CO2 transport passageways in Matrimid \hat{A}^{\otimes} membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166.	8.2	45
126	Anti-inflammatory Mechanism of Geniposide: Inhibiting the Hyperpermeability of Fibroblast-Like Synoviocytes via the RhoA/p38MAPK/NF-κB/F-Actin Signal Pathway. Frontiers in Pharmacology, 2018, 9, 105.	3.5	45

#	Article	IF	Citations
127	Construction of high selectivity and antifouling nanofiltration membrane via incorporating macrocyclic molecules into active layer. Journal of Membrane Science, 2020, 597, 117641.	8.2	45
128	Enhanced pervaporation performance of poly (dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. Journal of Membrane Science, 2011, 378, 382-392.	8.2	44
129	Bimetallic metal-organic frameworks nanocages as multi-functional fillers for water-selective membranes. Journal of Membrane Science, 2018, 545, 19-28.	8.2	44
130	Amino-functionalized POSS nanocage intercalated graphene oxide membranes for efficient biogas upgrading. Journal of Membrane Science, 2020, 596, 117733.	8.2	43
131	Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. Journal of Materials Chemistry A, 2020, 8, 19328-19336.	10.3	43
132	Angiogenesis as a potential treatment strategy for rheumatoid arthritis. European Journal of Pharmacology, 2021, 910, 174500.	3.5	43
133	Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538, 86-95.	8.2	42
134	Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545, 29-37.	8.2	42
135	Novel anti-inflammatory target of geniposide: Inhibiting ltg^21/Ras -Erk $1/2$ signal pathway via the miRNA-124a in rheumatoid arthritis synovial fibroblasts. International Immunopharmacology, 2018, 65, 284-294.	3.8	42
136	Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport. Nature Communications, 2022, 13, .	12.8	42
137	Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells. Journal of Membrane Science, 2014, 463, 134-144.	8.2	41
138	Significantly enhanced CO2 capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549, 670-679.	8.2	41
139	Porous organosilicon nanotubes in pebax-based mixed-matrix membranes for biogas purification. Journal of Membrane Science, 2019, 573, 301-308.	8.2	41
140	2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. Journal of Membrane Science, 2020, 598, 117663.	8.2	41
141	Coordination polymer nanocapsules prepared using metal–organic framework templates for pH-responsive drug delivery. Nanotechnology, 2017, 28, 275601.	2.6	40
142	Preparation and Catalytic Properties of Novel Alginateâ^'Silicaâ^'Dehydrogenase Hybrid Biocomposite Beads. Industrial & Engineering Chemistry Research, 2006, 45, 511-517.	3.7	39
143	Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. Journal of Membrane Science, 2021, 617, 118658.	8.2	39
144	MOF–COF "Alloy―Membranes for Efficient Propylene/Propane Separation. Advanced Materials, 2022, 34, e2201423.	21.0	39

#	Article	IF	Citations
145	Enhancing the permeation selectivity of sodium alginate membrane by incorporating attapulgite nanorods for ethanol dehydration. RSC Advances, 2016, 6, 14381-14392.	3.6	38
146	Enhanced desulfurization performance and stability of Pebax membrane by incorporating Cu+ and Fe2+ ions co-impregnated carbon nitride. Journal of Membrane Science, 2017, 526, 94-105.	8.2	38
147	A highly conductive and robust anion conductor obtained (i) synergistic manipulation in intra- and inter-laminate of layered double hydroxide nanosheets. Journal of Materials Chemistry A, 2018, 6, 10277-10285.	10.3	38
148	Exfoliation-free layered double hydroxides laminates intercalated with amino acids for enhanced CO2 separation of mixed matrix membrane. Journal of Membrane Science, 2021, 618, 118691.	8.2	38
149	Enzymatic conversion of Baicalin into Baicalein by \hat{l}^2 -glucuronidase encapsulated in biomimetic core-shell structured hybrid capsules. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 130-135.	1.8	37
150	Enhanced proton conductivity of the hybrid membranes by regulating the proton conducting groups anchored on the mesoporous silica. Journal of Power Sources, 2014, 270, 292-303.	7.8	36
151	Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry A, 2014, 2, 12907.	10.3	35
152	Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514, 73-85.	8.2	35
153	Photo-tailored heterocrystalline covalent organic framework membranes for organics separation. Nature Communications, 2022, 13, .	12.8	35
154	Facile preparation of porous magnetic polydopamine microspheres through an inverse replication strategy for efficient enzyme immobilization. Journal of Materials Chemistry B, 2015, 3, 7194-7202.	5.8	34
155	Comparison of facilitated transport behavior and separation properties of membranes with imidazole groups and zinc ions as CO2 carriers. Journal of Membrane Science, 2016, 505, 44-52.	8.2	34
156	Hierarchical pore architectures from 2D covalent organic nanosheets for efficient water/alcohol separation. Journal of Membrane Science, 2018, 561, 79-88.	8.2	33
157	Elevating the selectivity of layer-by-layer membranes by in situ bioinspired mineralization. Journal of Membrane Science, 2016, 520, 364-373.	8.2	32
158	Chemical and metabolic analysis of Achyranthes bidentate saponins with intestinal microflora-mediated biotransformation by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled with metabolism platform. Journal of Pharmaceutical and Biomedical Analysis, 2019, 170, 305-320.	2.8	32
159	Three-dimensional covalent organic framework membrane for efficient proton conduction. Journal of Materials Chemistry A, 2021, 9, 17720-17723.	10.3	32
160	Charged Nanochannels in Covalent Organic Framework Membranes Enabling Efficient Ion Exclusion. ACS Nano, 2022, 16, 11781-11791.	14.6	32
161	Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres. Materials Science and Engineering C, 2013, 33, 1438-1445.	7.3	31
162	Antifouling Nanofiltration Membrane Fabrication via Surface Assembling Light-Responsive and Regenerable Functional Layer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 52050-52058.	8.0	31

#	Article	IF	Citations
163	Ultrathin fluorinated self-cleaning membranes <i>via</i> coordination-driven metal-bridging assembly for water purification. Journal of Materials Chemistry A, 2020, 8, 4505-4514.	10.3	31
164	Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination. Separation and Purification Technology, 2021, 274, 119046.	7.9	31
165	Optimizing the sulfonic groups of a polymer to coat the zinc anode for dendrite suppression. Chemical Communications, 2021, 57, 5326-5329.	4.1	30
166	A MOF membrane with ultrathin ZIF-8 layer bonded on ZIF-8 in-situ embedded PSf substrate. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 273-283.	5.3	29
167	Mix-charged polyamide membranes via molecular hybridization for selective ionic nanofiltration. Journal of Membrane Science, 2022, 644, 120051.	8.2	29
168	Efficient ethylene/ethane separation through ionic liquid-confined covalent organic framework membranes. Journal of Materials Chemistry A, 2022, 10, 5420-5429.	10.3	29
169	Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8076-8085.	8.0	28
170	One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. Journal of Biotechnology, 2018, 266, 1-8.	3.8	28
171	Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. Journal of Membrane Science, 2016, 508, 84-93.	8.2	27
172	A facile metal ion pre-anchored strategy for fabrication of defect-free MOF membranes on polymeric substrates. Journal of Membrane Science, 2022, 650, 120419.	8.2	27
173	Desulfurization of model gasoline by bioinspired oleophilic nanocomposite membranes. Journal of Membrane Science, 2012, 415-416, 278-287.	8.2	26
174	Creation of hierarchical structures within membranes by incorporating mesoporous microcapsules for enhanced separation performance and stability. Journal of Materials Chemistry A, 2014, 2, 5267.	10.3	26
175	Enhanced carbon dioxide flux by catechol–Zn2+ synergistic manipulation of graphene oxide membranes. Chemical Engineering Science, 2019, 195, 230-238.	3.8	26
176	Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. Journal of Membrane Science, 2022, 648, 120366.	8.2	26
177	2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination. Desalination, 2022, 532, 115753.	8.2	26
178	Constructing channel-mediated facilitated transport membranes by incorporating covalent organic framework nanosheets with tunable microenvironments. Journal of Materials Chemistry A, 2019, 7, 9912-9923.	10.3	25
179	Sphingosine kinase 1 /sphingosine 1 -phosphate/sphingosine 1 -phosphate receptor 1 pathway: A novel target of geniposide to inhibit angiogenesis. Life Sciences, 2020, 256, 117988.	4.3	25
180	Ultrathin nanofiltration membrane assembled by polyethyleneimine-grafted graphene quantum dots. Journal of Membrane Science, 2022, 642, 119944.	8.2	25

#	Article	IF	CITATIONS
181	Chitosan/Sulfonated Polyethersulfone–Polyethersulfone (CS/SPES-PES) Composite Membranes for Pervaporative Dehydration of Ethanol. Industrial & Engineering Chemistry Research, 2013, 52, 5772-5780.	3.7	24
182	One-pot synthesis of silica–titania binary nanoparticles with acid–base pairs via biomimetic mineralization to fabricate highly proton-conductive membranes. Journal of Materials Chemistry A, 2017, 5, 18585-18593.	10.3	24
183	Constructing interconnected ionic cluster network in polyelectrolyte membranes for enhanced CO2 permeation. Chemical Engineering Science, 2019, 199, 275-284.	3.8	24
184	Metal–Organic Nanogel with Sulfonated Three-Dimensional Continuous Channels as a Proton Conductor. ACS Applied Materials & Interfaces, 2020, 12, 19788-19796.	8.0	24
185	Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638, 119706.	8.2	24
186	Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Frontiers in Pharmacology, 2021, 12, 733387.	3.5	24
187	Immobilization of \hat{I}^2 -glucuronidase in lysozyme-induced biosilica particles to improve its stability. Frontiers of Chemical Science and Engineering, 2014, 8, 353-361.	4.4	23
188	Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chemical Engineering Science, 2020, 216, 115497.	3.8	23
189	Incorporating self-anchored phosphotungstic acid@triazole-functionalized covalent organic framework into sulfonated poly(ether ether ketone) for enhanced proton conductivity. Solid State lonics, 2020, 349, 115316.	2.7	23
190	Improved proton conduction of sulfonated poly (ether ether ketone) membrane by sulfonated covalent organic framework nanosheets. International Journal of Hydrogen Energy, 2021, 46, 26550-26559.	7.1	23
191	Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Separation and Purification Technology, 2022, 288, 120682.	7.9	23
192	Incorporating imidazolium-functionalized graphene oxide into imidazolium-functionalized poly(ether) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
193	Essential Oil Extracted from <i>Cymbopogon citronella</i> Leaves by Supercritical Carbon Dioxide: Antioxidant and Antimicrobial Activities. Journal of Analytical Methods in Chemistry, 2019, 2019, 1-10.	1.6	22
194	Layer-by-layer self-assembled nanocomposite membranes via bio-inspired mineralization for pervaporation dehydration. Journal of Membrane Science, 2019, 570-571, 44-52.	8.2	22
195	Enhancing Proton Conductivity of Sulfonated Poly(ether ether ketone)-Based Membranes by Incorporating Phosphotungstic-Acid-Coupled Graphene Oxide. Industrial & Engineering Chemistry Research, 2021, 60, 4460-4470.	3.7	22
196	Anionic covalent organic framework engineered high-performance polyamide membrane for divalent anions removal. Journal of Membrane Science, 2022, 650, 120451.	8.2	22
197	Accelerating CO ₂ capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AICHE Journal, 2020, 66, e16800.	3.6	21
198	Facilitated transport membranes by incorporating different divalent metal ions as CO ₂ carriers. RSC Advances, 2016, 6, 65282-65290.	3.6	20

#	Article	IF	Citations
199	Confined facilitated transport within covalent organic frameworks for propylene/propane membrane separation. Chemical Engineering Journal, 2022, 439, 135657.	12.7	20
200	Merging of covalent cross-linking and biomimetic mineralization into an LBL self-assembly process for the construction of robust organic–inorganic hybrid microcapsules. Journal of Materials Chemistry B, 2014, 2, 4346.	5.8	19
201	Highly Hydroxide-Conductive Nanostructured Solid Electrolyte via Predesigned Ionic Nanoaggregates. ACS Applied Materials & Interfaces, 2017, 9, 28346-28354.	8.0	19
202	Embedding Molecular Amine Functionalized Polydopamine Submicroparticles into Polymeric Membrane for Carbon Capture. Industrial & Engineering Chemistry Research, 2017, 56, 8103-8110.	3.7	19
203	Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes. Journal of Materials Science, 2018, 53, 10499-10512.	3.7	19
204	Incorporating phosphoric acid-functionalized polydopamine into Nafion polymer by in situ sol-gel method for enhanced proton conductivity. Journal of Membrane Science, 2019, 570-571, 236-244.	8.2	19
205	Deciphering the metabolic profile and pharmacological mechanisms of Achyranthes bidentata blume saponins using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with network pharmacology-based investigation. Journal of Ethnopharmacology. 2021. 274. 114067.	4.1	19
206	Imidazolium-functionalized carbon nanotubes crosslinked with imidazole poly(ether ether ketone) for fabricating anion exchange membranes with high hydroxide conductivity and dimension stability. Electrochimica Acta, 2019, 318, 572-580.	5.2	18
207	Heterostructured graphene oxide membranes with tunable water-capture coatings for highly selective water permeation. Journal of Materials Chemistry A, 2021, 9, 7903-7912.	10.3	18
208	Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration. Journal of Membrane Science, 2022, 641, 119905.	8.2	18
209	Surface Modification of TFC-PA RO Membrane by Grafting Hydrophilic pH Switchable Poly(Acrylic Acid) Brushes. Advances in Polymer Technology, 2020, 2020, 1-12.	1.7	17
210	Preparing proton exchange membranes via incorporating silica-based nanoscale ionic materials for the enhanced proton conductivity. Solid State Ionics, 2020, 349, 115294.	2.7	17
211	Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. Journal of Membrane Science, 2021, 640, 119803.	8.2	17
212	Sulfonated lignin intercalated graphene oxide membranes for efficient proton conduction. Journal of Membrane Science, 2022, 644, 120126.	8.2	17
213	Defective Layered Double Hydroxide Nanosheet Boosts Electrocatalytic Hydrodechlorination Reaction on Supported Palladium Nanoparticles. ACS ES&T Water, 2022, 2, 1451-1460.	4.6	17
214	Nanoporous Phyllosilicate Assemblies for Enzyme Immobilization. ACS Applied Bio Materials, 2019, 2, 777-786.	4.6	16
215	Mixed matrix membrane contactor containing core-shell hierarchical Cu@4A filler for efficient SO2 capture. Journal of Hazardous Materials, 2019, 376, 160-169.	12.4	16
216	Use of cellular metabolomics and lipidomics to decipher the mechanism of Huachansu injection-based intervention against human hepatocellular carcinoma cells. Journal of Pharmaceutical and Biomedical Analysis, 2022, 212, 114654.	2.8	16

#	Article	IF	CITATIONS
217	Widening CO2-facilitated transport passageways in SPEEK matrix using polymer brushes functionalized double-shelled organic submicrocapsules for efficient gas separation. Journal of Membrane Science, 2017, 525, 330-341.	8.2	15
218	Supramolecular Calix $[\langle i \rangle n \langle i \rangle]$ arenes-Intercalated Graphene Oxide Membranes for Efficient Proton Conduction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42250-42260.	8.0	15
219	Polymer Electrolyte Membranes with Hybrid Cluster Network for Efficient CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6815-6825.	6.7	15
220	Tight Covalent Organic Framework Membranes for Efficient Anion Transport via Molecular Precursor Engineering. Angewandte Chemie, 2021, 133, 17779-17787.	2.0	15
221	Geniposide alleviates VEGF-induced angiogenesis by inhibiting VEGFR2/PKC/ERK1/2-mediated SphK1 translocation. Phytomedicine, 2022, 100, 154068.	5.3	15
222	Flexible, transparent ion-conducting membranes from two-dimensional nanoclays of intrinsic conductivity. Journal of Materials Chemistry A, 2019, 7, 25657-25664.	10.3	14
223	Improved processing behaviors and mechanical properties of polyolefin elastomer blends prepared by ultrasoundâ€assisted extrusion. Journal of Applied Polymer Science, 2009, 112, 2136-2142.	2.6	13
224	Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO ₂ Separations. Angewandte Chemie, 2017, 129, 14434-14439.	2.0	13
225	Anti-Inflammatory Effect of Geniposide on Regulating the Functions of Rheumatoid Arthritis Synovial Fibroblasts via Inhibiting Sphingosine-1-Phosphate Receptors $1/3$ Coupling $\hat{Gl}_{\pm i}/\hat{Gl}_{\pm s}$ Conversion. Frontiers in Pharmacology, 2020, 11 , 584176 .	3.5	13
226	Surface functionalization of Polymers of Intrinsic Microporosity (PIMs) membrane by polyphenol for efficient CO2 separation. Green Chemical Engineering, 2021, 2, 70-76.	6.3	13
227	The interplay between fibroblastâ€like synovial and vascular endothelial cells leads to angiogenesis via the sphingosineâ€lâ€phosphateâ€induced <scp>RhoAâ€F</scp> â€Actin and <scp>Rasâ€Erk1</scp> /2 pathways intervention of geniposide. Phytotherapy Research, 2021, 35, 5305-5317.	ങ്ങളി the	13
228	Enhanced proton conductivity of proton exchange membrane at low humidity based on poly(methacrylic acid)-loaded imidazole microcapsules. RSC Advances, 2015, 5, 9079-9088.	3.6	12
229	Immune Tolerance Effect in Mesenteric Lymph Node Lymphocytes of Geniposide on Adjuvant Arthritis Rats. Phytotherapy Research, 2017, 31, 1249-1256.	5.8	12
230	Phosphorylated graphene monoliths with high mixed proton/electron conductivity. Journal of Materials Chemistry A, 2018, 6, 8499-8506.	10.3	12
231	Hollow monocrystalline silicaliteâ€1 hybrid membranes for efficient pervaporative desulfurization. AICHE Journal, 2019, 65, 196-206.	3.6	12
232	Enhancing Catalytic Activity and Stability of Yeast Alcohol Dehydrogenase by Encapsulation in Chitosan-Calcium Phosphate Hybrid Beads. Industrial & Engineering Chemistry Research, 2015, 54, 597-604.	3.7	11
233	Novel composite membranes based on sulfonated poly(ether ether ketone) and adenosine triphosphate for enhanced proton conduction. RSC Advances, 2015, 5, 75434-75441.	3.6	11
234	Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO2 separation. Journal of Membrane Science, 2018, 563, 229-237.	8.2	11

#	Article	IF	CITATIONS
235	Fouling-resistant robust membranes via electrostatic complexation for water purification. Chemical Engineering Journal, 2021, 416, 129139.	12.7	11
236	Enzymatic Conversion of Carbon Dioxide to Methanol by Dehydrogenases Encapsulated in Sol—Gel Matrix. ACS Symposium Series, 2003, , 212-218.	0.5	10
237	Fabrication of Chitosan Membranes with High Flux by Magnetic Alignment of In Situ Generated Fe ₃ O ₄ . Chemical Engineering and Technology, 2016, 39, 969-978.	1.5	10
238	Water-selective hybrid membranes with improved interfacial compatibility from mussel-inspired dopamine-modified alginate and covalent organic frameworks. Chinese Journal of Chemical Engineering, 2020, 28, 90-97.	3.5	10
239	Effect of organic grafting expandable graphite on combustion behaviors and thermal stability of lowâ€density polyethylene composites. Polymer Composites, 2020, 41, 719-728.	4.6	10
240	Highly Proton Conductive Phosphoric Acid Porous Organic Polymers via Knitting Method. Industrial & Lamp; Engineering Chemistry Research, 2021, 60, 6337-6343.	3.7	10
241	Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. Journal of Membrane Science, 2022, 645, 120186.	8.2	10
242	Tröger's Base Polyimide Hybrid Membranes by Incorporating UiO-66-NH ₂ Nanoparticles for Gas Separation. Industrial & Samp; Engineering Chemistry Research, 2022, 61, 3418-3427.	3.7	10
243	Enhanced proton conductivity of proton exchange membranes by incorporating phosphorylated hollow titania spheres. RSC Advances, 2016, 6, 68407-68415.	3.6	9
244	Intrinsic proton conductive deoxyribonucleic acid (DNA) intercalated graphene oxide membrane for high-efficiency proton conduction. Journal of Membrane Science, 2020, 606, 118136.	8.2	9
245	The anti-angiogenesis mechanism of Geniposide on rheumatoid arthritis is related to the regulation of PTEN. Inflammopharmacology, 2022, 30, 1047-1062.	3.9	9
246	Vermiculite membranes intercalated with amino acids for efficient biogas upgrading. Separation and Purification Technology, 2022, 297, 121465.	7.9	9
247	Enhanced flow behaviors of metalloceneâ€catalyzed linear lowâ€density polyethylene during ultrasoundâ€assisted extrusion. Polymer Engineering and Science, 2010, 50, 2229-2235.	3.1	8
248	Enhanced Electro-Fenton Degradation of Ciprofloxacin by Membrane Aeration. Industrial & Engineering Chemistry Research, 2022, 61, 8141-8148.	3.7	8
249	Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie, 2021, 133, 18199-18206.	2.0	7
250	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie, 2021, 133, 27284-27291.	2.0	7
251	Polyelectrolyte membranes with tunable hollow CO2-philic clusters via sacrificial template for biogas upgrading. Journal of Membrane Science, 2020, 612, 118445.	8.2	6
252	Enhancement in proton conductivity by blending poly(polyoxometalate)-b-poly(hexanoic acid) block copolymers with sulfonated polysulfone. International Journal of Hydrogen Energy, 2020, 45, 15495-15506.	7.1	6

#	Article	IF	CITATIONS
253	Dietary Advanced Glycation Endâ€Products Affects the Progression of Early Diabetes by Intervening in Carbohydrate and Lipid Metabolism. Molecular Nutrition and Food Research, 2022, 66, e2200046.	3.3	6
254	Synthesis of Proton Conductive Copolymers of Inorganic Polyacid Cluster Polyelectrolytes and PEO Bottlebrush Polymers. Macromolecules, 2022, 55, 3301-3310.	4.8	6
255	Inhibition of sphingosine 1â€phosphate (S1P) receptor 1/2/3 ameliorates biological dysfunction in rheumatoid arthritis fibroblastâ€ike synoviocyte MH7A cells through Gαi/Gαs rebalancing. Clinical and Experimental Pharmacology and Physiology, 2021, 48, 1080-1089.	1.9	5
256	Oneâ€Pot Synthesis of Chloromethylated Mesoporous Silica Nanoparticles as Multifunctional Fillers in Hybrid Anion Exchange Membranes. Chinese Journal of Chemistry, 2017, 35, 673-680.	4.9	4
257	<i>In situ</i> knitted microporous polymer membranes for efficient CO ₂ capture. Journal of Materials Chemistry A, 2021, 9, 2126-2134.	10.3	4
258	Cucurbit[n]uril-rotaxanes functionalized membranes with heterogeneous channel and regenerable surface for efficient and sustainable nanofiltration. Journal of Membrane Science, 2022, 659, 120765.	8.2	4
259	Synergism of orderly intrinsic and extrinsic proton-conducting sites in covalent organic framework membranes. Chemical Engineering Research and Design, 2022, 179, 484-492.	5.6	3
260	Fuel Cells: Graphene Oxideâ€Based Solid Electrolytes with 3D Prepercolating Pathways for Efficient Proton Transport (Adv. Funct. Mater. 50/2018). Advanced Functional Materials, 2018, 28, 1870358.	14.9	2