Gamze Torun KÃ-se

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7658554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of different pore sizes of 3D printed PLA-based scaffold in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1021-1031.	1.8	8
2	Osteo/odontogenic differentiation analysis of dental stem cells from tooth germ, apical papilla, and dental follicle. Oral Science International, 2022, 19, 180-192.	0.3	1
3	A novel method for providing scaffold: Decellularization of parathyroid capsule. Journal of Biomaterials Applications, 2022, 36, 1201-1212.	1.2	2
4	The effect of polyethylenglycol gel on the delivery and osteogenic differentiation of homologous tooth germ–derived stem cells in a porcine model. Clinical Oral Investigations, 2021, 25, 3043-3057.	1.4	2
5	Assessment of bone healing using (<scp>Ti,Mg)N</scp> thin film coated plates and screws: Rabbit femur model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 227-237.	1.6	2
6	Investigation of Vasculogenesis Inducing Biphasic Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2021, 7, 1526-1538.	2.6	12
7	Chondro-inductive hyaluronic acid/chitosan coacervate-based scaffolds for cartilage tissue engineering. International Journal of Biological Macromolecules, 2021, 188, 300-312.	3.6	17
8	Evaluation of natural gum-based cryogels for soft tissue engineering. Carbohydrate Polymers, 2021, 271, 118407.	5.1	13
9	Biodegradable polymeric networks of poly(propylene fumarate) and phosphonic acidâ€based monomers. Polymer International, 2020, 69, 1283-1296.	1.6	4
10	Tissue transglutaminase_variant 2â€ŧransduced mesenchymal stem cells and their chondrogenic potential. Biotechnology and Bioengineering, 2020, 117, 1839-1852.	1.7	1
11	Microfibrous scaffolds from poly(l-lactide-co-îµ-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Materials Science and Engineering C, 2019, 97, 31-44.	3.8	59
12	Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA. Turkish Journal of Biology, 2019, 43, 235-245.	2.1	18
13	Dental Stem Cells in Bone Tissue Engineering: Current Overview and Challenges. Advances in Experimental Medicine and Biology, 2018, 1107, 113-127.	0.8	40
14	Hyaluronic Acid/Chitosan Coacervate-Based Scaffolds. Biomacromolecules, 2018, 19, 1198-1211.	2.6	37
15	Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 607-618.	1.9	18
16	Optimisation of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium. Materials Technology, 2018, 33, 119-126.	1.5	30
17	Surface modification of Ti6Al4V by micro-arc oxidation in AgC ₂ H ₃ O ₂ -containing electrolyte. Surface Innovations, 2018, 6, 277-285.	1.4	23
18	Gene Therapy Strategies in Bone Tissue Engineering and Current Clinical Applications. Advances in Experimental Medicine and Biology, 2018, 1119, 85-101.	0.8	18

Gamze Torun KÖse

#	Article	IF	CITATIONS
19	Cartilage tissue engineering on macroporous scaffolds using human tooth germ stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 765-777.	1.3	10
20	Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 831-842.	1.3	19
21	Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings. Jom, 2017, 69, 1195-1205.	0.9	8
22	3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomaterials Science, 2017, 5, 2144-2158.	2.6	72
23	An in vitro human skeletal muscle model: coculture of myotubes,neuron-like cells, and the capillary network. Turkish Journal of Biology, 2017, 41, 514-525.	2.1	0
24	In vitro evaluation of PLLA/PBS sponges as a promisingbiodegradable scaffold for neural tissue engineering. Turkish Journal of Biology, 2017, 41, 734-745.	2.1	4
25	Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds. Stem Cells International, 2016, 2016, 1-16.	1.2	12
26	Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvascular Research, 2016, 108, 1-9.	1.1	35
27	Targeted mesenchymal stem cell and vascular endothelial growth factor strategies for repair of nerve defects with nerve tissue implanted autogenous vein graft conduits. Microsurgery, 2016, 36, 578-585.	0.6	15
28	Behavior of mammalian cells on magnesium substituted bare and hydroxyapatite deposited (Ti,Mg)N coatings. New Biotechnology, 2015, 32, 747-755.	2.4	13
29	Acrylic bone cements: Effects of the poly(methyl methacrylate) powder size and chitosan addition on their properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	19
30	Polybutylene Succinate (PBS) – Polycaprolactone (PCL) Blends Compatibilized with Poly(ethylene) Tj ETQq0 0 0 for Biomaterial Applications. Polymer-Plastics Technology and Engineering, 2014, 53, 1178-1193.	rgBT /O 1.9	verlock 10 Tf 23
31	Effect of double growth factor release on cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 149-160.	1.3	40
32	Bone response to biomimetic implants delivering BMP-2 and VEGF: An immunohistochemical study. Journal of Cranio-Maxillo-Facial Surgery, 2013, 41, 826-835.	0.7	53
33	Response of CD44+/CD24â^'/low breast cancer stem/progenitor cells to tamoxifen- and doxorubicin-induced autophagy. International Journal of Molecular Medicine, 2013, 31, 1477-1483.	1.8	18
34	The Effect of Subcutaneous Mesenchymal Stem Cell Injection on Statis Zone and Apoptosis in an Experimental Burn Model. Plastic and Reconstructive Surgery, 2013, 131, 463-471.	0.7	43
35	Potential Use of Dental Stem Cells for Craniofacial Tissue Regeneration. Pancreatic Islet Biology, 2013, , 105-124.	0.1	2
36	Spinal Cord Injury: Tissue Engineering Using Neural Stem Cells. , 2013, , 271-287.		0

#	Article	IF	CITATIONS
37	Prefabrication of vascularized bone graft using an interconnected porous calcium hydroxyapatite ceramic in presence of vascular endothelial growth factor and bone marrow mesenchymal stem cells: Experimental study in rats. Indian Journal of Plastic Surgery, 2012, 45, 444.	0.2	6
38	Characterization of cancer stem-like cells in chordoma. Journal of Neurosurgery, 2012, 116, 810-820.	0.9	60
39	Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2012, 8, n/a-n/a.	1.3	19
40	Cytotoxicity of local anesthetics to rats articular cartilage: an experimental study. Acta Orthopaedica Et Traumatologica Turcica, 2012, 46, 201-207.	0.3	22
41	Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications. Materials Characterization, 2011, 62, 304-311.	1.9	101
42	Polyester based nerve guidance conduit design. Biomaterials, 2010, 31, 1596-1603.	5.7	127
43	Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes. Biomacromolecules, 2010, 11, 3584-3591.	2.6	39
44	Effect of hyperbaric oxygen therapy on bone prefabrication in rats. Acta Orthopaedica Et Traumatologica Turcica, 2010, 44, 403-409.	0.3	7
45	Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials, 2009, 30, 5417-5426.	5.7	48
46	Tissue engineering of bone on micropatterned biodegradable polyester films. Biomaterials, 2006, 27, 885-895.	5.7	60
47	Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials, 2005, 26, 5187-5197.	5.7	119
48	In Vivo Tissue Engineering of Bone Using Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and Collagen Scaffolds. Tissue Engineering, 2004, 10, 1234-1250.	4.9	65
49	Cartilage Tissue Engineering. Advances in Experimental Medicine and Biology, 2004, 553, 317-329.	0.8	2
50	Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices. Journal of Materials Science: Materials in Medicine, 2003, 14, 121-126.	1.7	66
51	Low-Molecular-Weight Heparin-Conjugated Liposomes with Improved Stability and Hemocompatibility. Drug Delivery, 1998, 5, 257-264.	2.5	16