Gamze Torun KÃ-se

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7658554/publications.pdf

Version: 2024-02-01

361413 330143 1,448 51 20 37 citations h-index g-index papers 51 51 51 2438 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polyester based nerve guidance conduit design. Biomaterials, 2010, 31, 1596-1603.	11.4	127
2	Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials, 2005, 26, 5187-5197.	11.4	119
3	Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications. Materials Characterization, 2011, 62, 304-311.	4.4	101
4	3D printed poly($\hat{l}\mu$ -caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Biomaterials Science, 2017, 5, 2144-2158.	5 . 4	72
5	Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) based tissue engineering matrices. Journal of Materials Science: Materials in Medicine, 2003, 14, 121-126.	3.6	66
6	In Vivo Tissue Engineering of Bone Using Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) and Collagen Scaffolds. Tissue Engineering, 2004, 10, 1234-1250.	4.6	65
7	Tissue engineering of bone on micropatterned biodegradable polyester films. Biomaterials, 2006, 27, 885-895.	11.4	60
8	Characterization of cancer stem-like cells in chordoma. Journal of Neurosurgery, 2012, 116, 810-820.	1.6	60
9	Microfibrous scaffolds from poly(l-lactide-co-Îμ-caprolactone) blended with xeno-free collagen/hyaluronic acid for improvement of vascularization in tissue engineering applications. Materials Science and Engineering C, 2019, 97, 31-44.	7.3	59
10	Bone response to biomimetic implants delivering BMP-2 and VEGF: An immunohistochemical study. Journal of Cranio-Maxillo-Facial Surgery, 2013, 41, 826-835.	1.7	53
11	Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials, 2009, 30, 5417-5426.	11.4	48
12	The Effect of Subcutaneous Mesenchymal Stem Cell Injection on Statis Zone and Apoptosis in an Experimental Burn Model. Plastic and Reconstructive Surgery, 2013, 131, 463-471.	1.4	43
13	Effect of double growth factor release on cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 149-160.	2.7	40
14	Dental Stem Cells in Bone Tissue Engineering: Current Overview and Challenges. Advances in Experimental Medicine and Biology, 2018, 1107, 113-127.	1.6	40
15	Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes. Biomacromolecules, 2010, 11, 3584-3591.	5.4	39
16	Hyaluronic Acid/Chitosan Coacervate-Based Scaffolds. Biomacromolecules, 2018, 19, 1198-1211.	5.4	37
17	Influence of co-culture on osteogenesis and angiogenesis of bone marrow mesenchymal stem cells and aortic endothelial cells. Microvascular Research, 2016, 108, 1-9.	2.5	35
18	Optimisation of micro-arc oxidation electrolyte for fabrication of antibacterial coating on titanium. Materials Technology, 2018, 33, 119-126.	3.0	30

#	Article	IF	CITATIONS
19	Polybutylene Succinate (PBS) – Polycaprolactone (PCL) Blends Compatibilized with Poly(ethylene) Tj ETQq1 1	0.784314	rgBT /Over <mark>lo</mark> 23
19	for Biomaterial Applications. Polymer-Plastics Technology and Engineering, 2014, 53, 1178-1193.	1.9	23
20	Surface modification of Ti6Al4V by micro-arc oxidation in AgC ₂ H ₃ O ₂ -containing electrolyte. Surface Innovations, 2018, 6, 277-285.	2.3	23
21	Cytotoxicity of local anesthetics to rats articular cartilage: an experimental study. Acta Orthopaedica Et Traumatologica Turcica, 2012, 46, 201-207.	0.8	22
22	Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2012, 8, n/a-n/a.	2.7	19
23	Acrylic bone cements: Effects of the poly(methyl methacrylate) powder size and chitosan addition on their properties. Journal of Applied Polymer Science, 2014, 131, .	2.6	19
24	Poly(amino acid)-based fibrous scaffolds modified with surface-pendant peptides for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 831-842.	2.7	19
25	Response of CD44+/CD24â°/low breast cancer stem/progenitor cells to tamoxifen- and doxorubicin-induced autophagy. International Journal of Molecular Medicine, 2013, 31, 1477-1483.	4.0	18
26	Role of STRO-1 sorting of porcine dental germ stem cells in dental stem cell-mediated bone tissue engineering. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 607-618.	2.8	18
27	Gene Therapy Strategies in Bone Tissue Engineering and Current Clinical Applications. Advances in Experimental Medicine and Biology, 2018, 1119, 85-101.	1.6	18
28	Fibrous bone tissue engineering scaffolds prepared by wet spinning of PLGA. Turkish Journal of Biology, 2019, 43, 235-245.	0.8	18
29	Chondro-inductive hyaluronic acid/chitosan coacervate-based scaffolds for cartilage tissue engineering. International Journal of Biological Macromolecules, 2021, 188, 300-312.	7.5	17
30	Low-Molecular-Weight Heparin-Conjugated Liposomes with Improved Stability and Hemocompatibility. Drug Delivery, 1998, 5, 257-264.	5.7	16
31	Targeted mesenchymal stem cell and vascular endothelial growth factor strategies for repair of nerve defects with nerve tissue implanted autogenous vein graft conduits. Microsurgery, 2016, 36, 578-585.	1.3	15
32	Behavior of mammalian cells on magnesium substituted bare and hydroxyapatite deposited (Ti,Mg)N coatings. New Biotechnology, 2015, 32, 747-755.	4.4	13
33	Evaluation of natural gum-based cryogels for soft tissue engineering. Carbohydrate Polymers, 2021, 271, 118407.	10.2	13
34	Bone Formation from Porcine Dental Germ Stem Cells on Surface Modified Polybutylene Succinate Scaffolds. Stem Cells International, 2016, 2016, 1-16.	2.5	12
35	Investigation of Vasculogenesis Inducing Biphasic Scaffolds for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2021, 7, 1526-1538.	5.2	12
36	Cartilage tissue engineering on macroporous scaffolds using human tooth germ stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 765-777.	2.7	10

#	Article	IF	CITATIONS
37	Effect of Magnesium and Osteoblast Cell Presence on Hydroxyapatite Formation on (Ti,Mg)N Thin Film Coatings. Jom, 2017, 69, 1195-1205.	1.9	8
38	Effect of different pore sizes of 3D printed PLA-based scaffold in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1021-1031.	3.4	8
39	Effect of hyperbaric oxygen therapy on bone prefabrication in rats. Acta Orthopaedica Et Traumatologica Turcica, 2010, 44, 403-409.	0.8	7
40	Prefabrication of vascularized bone graft using an interconnected porous calcium hydroxyapatite ceramic in presence of vascular endothelial growth factor and bone marrow mesenchymal stem cells: Experimental study in rats. Indian Journal of Plastic Surgery, 2012, 45, 444.	0.5	6
41	Biodegradable polymeric networks of poly(propylene fumarate) and phosphonic acidâ€based monomers. Polymer International, 2020, 69, 1283-1296.	3.1	4
42	In vitro evaluation of PLLA/PBS sponges as a promisingbiodegradable scaffold for neural tissue engineering. Turkish Journal of Biology, 2017, 41, 734-745.	0.8	4
43	The effect of polyethylenglycol gel on the delivery and osteogenic differentiation of homologous tooth germ–derived stem cells in a porcine model. Clinical Oral Investigations, 2021, 25, 3043-3057.	3.0	2
44	Assessment of bone healing using (<scp>Ti,Mg)N</scp> thin film coated plates and screws: Rabbit femur model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 227-237.	3.4	2
45	Cartilage Tissue Engineering. Advances in Experimental Medicine and Biology, 2004, 553, 317-329.	1.6	2
46	Potential Use of Dental Stem Cells for Craniofacial Tissue Regeneration. Pancreatic Islet Biology, 2013, , 105-124.	0.3	2
47	A novel method for providing scaffold: Decellularization of parathyroid capsule. Journal of Biomaterials Applications, 2022, 36, 1201-1212.	2.4	2
48	Tissue transglutaminase_variant 2â€transduced mesenchymal stem cells and their chondrogenic potential. Biotechnology and Bioengineering, 2020, 117, 1839-1852.	3.3	1
49	Osteo/odontogenic differentiation analysis of dental stem cells from tooth germ, apical papilla, and dental follicle. Oral Science International, 2022, 19, 180-192.	0.7	1
50	An in vitro human skeletal muscle model: coculture of myotubes, neuron-like cells, and the capillary network. Turkish Journal of Biology, 2017, 41, 514-525.	0.8	0
51	Spinal Cord Injury: Tissue Engineering Using Neural Stem Cells. , 2013, , 271-287.		0