List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accurate approximation of the expected value, standard deviation, and probability density function of extreme order statistics from Gaussian samples. Communications in Statistics Part B: Simulation and Computation, 2024, 53, 869-878.	1.2	0
2	Estimation of standard deviations and inverseâ€variance weights from an observed range. Statistics in Medicine, 2022, 41, 242-257.	1.6	6
3	Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever. Dynamic Games and Applications, 2022, 12, 133-146.	1.9	5
4	Quasi-neutral evolution in populations under small demographic fluctuations. Journal of Theoretical Biology, 2022, 538, 111040.	1.7	1
5	An ODE model of yaws elimination in Lihir Island, Papua New Guinea. PeerJ, 2022, 10, e13018.	2.0	1
6	Unified approach to optimal estimation of mean and standard deviation from sample summaries. Statistical Methods in Medical Research, 2022, 31, 2087-2103.	1.5	5
7	Modelling Evolution in Structured Populations Involving Multiplayer Interactions. Dynamic Games and Applications, 2021, 11, 270-293.	1.9	6
8	A mathematical model of kin selection in floral displays. Journal of Theoretical Biology, 2021, 509, 110470.	1.7	1
9	Moran process and Wright-Fisher process favor low variability. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 3491.	0.9	4
10	Owner–Intruder contests with correlated resource values. International Journal of Biomathematics, 2021, 14, 2150021.	2.9	2
11	Mathematical modelling of the use of insecticide-treated nets for elimination of visceral leishmaniasis in Bihar, India. Royal Society Open Science, 2021, 8, 201960.	2.4	8
12	A mathematical model of Guinea worm disease in Chad with fish as intermediate transport hosts. Journal of Theoretical Biology, 2021, 521, 110683.	1.7	4
13	Owner-Intruder contests with information asymmetry. Mathematical Modelling of Natural Phenomena, 2021, 16, 17.	2.4	1
14	Optimal Voluntary Vaccination of Adults and Adolescents Can Help Eradicate Hepatitis B in China. Games, 2021, 12, 82.	0.6	10
15	Costly signalling theory and dishonest signalling. Theoretical Ecology, 2020, 13, 85-92.	1.0	5
16	Models and measures of animal aggregation and dispersal. Journal of Theoretical Biology, 2020, 484, 110002.	1.7	4
17	Dishonest Signalling in a Variant of Pygmalion Game. Dynamic Games and Applications, 2020, 10, 719-731.	1.9	2
18	Kleptoparasitic interactions modeling varying owner and intruder hunger awareness. Theoretical Population Biology, 2020, 136, 31-40.	1.1	1

#	Article	IF	CITATIONS
19	Estimating the sample variance from the sample size and range. Statistics in Medicine, 2020, 39, 4667-4686.	1.6	10
20	A temporal model of territorial defence with antagonistic interactions. Theoretical Population Biology, 2020, 134, 15-35.	1.1	7
21	Game-Theoretical Model of Retroactive Hepatitis B Vaccination in China. Bulletin of Mathematical Biology, 2020, 82, 80.	1.9	16
22	A game-theoretical analysis of poliomyelitis vaccination. Journal of Theoretical Biology, 2020, 499, 110298.	1.7	16
23	High endemic levels of typhoid fever in rural areas of Ghana may stem from optimal voluntary vaccination behaviour. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200354.	2.1	15
24	A voluntary use of insecticide treated nets can stop the vector transmission of Chagas disease. PLoS Neglected Tropical Diseases, 2020, 14, e0008833.	3.0	7
25	A game-theoretic model of Monkeypox to assess vaccination strategies. PeerJ, 2020, 8, e9272.	2.0	59
26	The effect of network topology on optimal exploration strategies and the evolution of cooperation in a mobile population. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190399.	2.1	6
27	Generalized Social Dilemmas: The Evolution of Cooperation in Populations with Variable Group Size. Bulletin of Mathematical Biology, 2019, 81, 4643-4674.	1.9	22
28	The signalling game between plants and pollinators. Scientific Reports, 2018, 8, 6686.	3.3	12
29	Evolutionary Games with Sequential Decisions and Dollar Auctions. Dynamic Games and Applications, 2018, 8, 211-231.	1.9	7
30	Models of kleptoparasitism on networks: the effect of population structure on food stealing behaviour. Journal of Mathematical Biology, 2018, 76, 1465-1488.	1.9	4
31	The effect of fight cost structure on fighting behaviour involving simultaneous decisions and variable investment levels. Journal of Mathematical Biology, 2018, 76, 457-482.	1.9	3
32	Ideal Cost-Free Distributions in Structured Populations for General Payoff Functions. Dynamic Games and Applications, 2018, 8, 79-92.	1.9	3
33	A Game-Theoretic Model of Cholera with Optimal Personal Protection Strategies. Bulletin of Mathematical Biology, 2018, 80, 2580-2599.	1.9	22
34	Evolving multiplayer networks: Modelling the evolution of cooperation in a mobile population. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 1975-2004.	0.9	6
35	Evolutionary dynamics and the evolution of multiplayer cooperation in a subdivided population. Journal of Theoretical Biology, 2017, 429, 105-115.	1.7	13
36	Introduction to the Special Issue on Perspectives and Experiences on Mentoring Undergraduate Students in Research: Part I. Primus, 2017, 27, 315-319.	0.5	1

#	Article	IF	CITATIONS
37	Introduction to the Special Issue on Perspectivesand Experiences on Mentoring Undergraduate Students in Research: Part II. Primus, 2017, 27, 437-441.	0.5	1
38	Resource competition amid overlapping territories: The territorial raider model applied to multi-group interactions. Journal of Theoretical Biology, 2017, 412, 100-106.	1.7	11
39	Optimal aggression in kleptoparasitic interactions. Involve, 2017, 10, 735-747.	0.2	4
40	Optimal Repellent Usage to Combat Dengue Fever. Bulletin of Mathematical Biology, 2016, 78, 916-922.	1.9	17
41	The Territorial Raider game and graph derangements. Discrete Applied Mathematics, 2016, 213, 13-16.	0.9	2
42	Nonlinear and Multiplayer Evolutionary Games. , 2016, , 95-115.		4
43	Cooperation in finite populations: Being alone helps. Journal of Interdisciplinary Mathematics, 2016, 19, 799-809.	0.7	2
44	A continuous ideal free distribution approach to the dynamics of selfish, cooperative and kleptoparasitic populations. Royal Society Open Science, 2016, 3, 160788.	2.4	4
45	A model of food stealing with asymmetric information. Ecological Complexity, 2016, 26, 137-142.	2.9	3
46	THE EVOLUTION OF COOPERATION IN 1-DIMENSIONAL MOBILE POPULATIONS. Far East Journal of Applied Mathematics, 2016, 95, 63-88.	0.1	8
47	The Came-Theoretical Model of Using Insecticide-Treated Bed-Nets to Fight Malaria. Applied Mathematics, 2016, 07, 852-860.	0.4	15
48	A study of the dynamics of multi-player games on small networks using territorial interactions. Journal of Mathematical Biology, 2015, 71, 1551-1574.	1.9	16
49	Cooperative behaviour in theory and practice: leading undergraduate research in behaviour mathematical biology. Letters in Biomathematics, 2015, 2, 29-45.	0.1	1
50	A voluntary use of insecticide-treated cattle can eliminate African sleeping sickness. Letters in Biomathematics, 2015, 2, 91-101.	0.1	8
51	The evolution of cooperation is affected by the persistence of fitness effects, the neighborhood size and their interaction. Letters in Biomathematics, 2015, 2, 67-78.	0.1	1
52	A Three-Player Singled Out Game. Journal of Statistical Theory and Practice, 2015, 9, 882-895.	0.5	0
53	A structured population model suggests that long life and post-reproductive lifespan promote the evolution of cooperation. Journal of Theoretical Biology, 2015, 369, 85-94.	1.7	12
54	The effect of fight cost structure on fighting behaviour. Journal of Mathematical Biology, 2015, 71, 979-996.	1.9	5

#	Article	IF	CITATIONS
55	The screening game in plant–pollinator interactions. Evolutionary Ecology, 2015, 29, 479-487.	1.2	8
56	Evolutionary graph theory revisited: when is an evolutionary process equivalent to the Moran process?. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150334.	2.1	46
57	A game-theoretic approach to valuating toxoplasmosis vaccination strategies. Theoretical Population Biology, 2015, 105, 33-38.	1.1	30
58	A Voluntary Use of Insecticide-Treated Cattle can Eliminate African Sleeping Sickness. Letters in Biomathematics, 2015, 2, .	0.1	6
59	Waste Recycling Can Promote Group Living: A cockroach case study. Letters in Biomathematics, 2014, 1, 17-22.	0.1	2
60	Asymmetric Games in Monomorphic and Polymorphic Populations. Dynamic Games and Applications, 2014, 4, 391-406.	1.9	3
61	Characterization of transmembrane auxin transport in Arabidopsis suspension-cultured cells. Journal of Plant Physiology, 2014, 171, 429-437.	3.5	15
62	Analysing territorial models on graphs. Involve, 2014, 7, 129-149.	0.2	11
63	Effect of Density and Extra Dung on Brood Parasitism in the Dung Beetle, Onthophagus Taurus. Journal of Insect Behavior, 2013, 26, 253-259.	0.7	4
64	The Effect of Information on Payoff in Kleptoparasitic Interactions. Springer Proceedings in Mathematics and Statistics, 2013, , 125-134.	0.2	6
65	Overexpression of the Auxin Binding PROTEIN1 Modulates PIN-Dependent Auxin Transport in Tobacco Cells. PLoS ONE, 2013, 8, e70050.	2.5	19
66	A Spatially Organized Population Model to Study the Evolution of Cooperation in Species with Discrete Life-History Stages. Springer Proceedings in Mathematics and Statistics, 2013, , 147-154.	0.2	0
67	Effects of causal networks on the structure and stability of resource allocation trait correlations. Journal of Theoretical Biology, 2012, 293, 1-14.	1.7	8
68	A game theoretic model of kleptoparasitism with strategic arrivals and departures of beetles at dung pats. Journal of Theoretical Biology, 2012, 300, 292-298.	1.7	6
69	A general framework for analysing multiplayer games in networks using territorial interactions as a case study. Journal of Theoretical Biology, 2012, 302, 70-80.	1.7	37
70	Evolutionary Games on Star Graphs Under Various Updating Rules. Dynamic Games and Applications, 2011, 1, 386-407.	1.9	51
71	Kleptoparasitic Melees—Modelling Food Stealing Featuring Contests with Multiple Individuals. Bulletin of Mathematical Biology, 2011, 73, 683-699.	1.9	13
72	The stochastic modelling of kleptoparasitism using a Markov process. Journal of Theoretical Biology, 2010, 264, 266-272.	1.7	14

#	Article	IF	CITATIONS
73	Evolutionary dynamics on small-order graphs. Journal of Interdisciplinary Mathematics, 2009, 12, 129-140.	0.7	46
74	A game theoretical model of kleptoparasitism with incomplete information. Journal of Mathematical Biology, 2009, 59, 631-649.	1.9	12
75	A game-theoretic model of kleptoparasitic behavior in polymorphic populations. Journal of Theoretical Biology, 2008, 255, 81-91.	1.7	28
76	Variance-based selection may explain general mating patterns in social insects. Biology Letters, 2008, 4, 270-273.	2.3	25
77	On uniformly Gâteaux smooth norms and normal structure. Proceedings of the American Mathematical Society, 2007, 135, 1511-1515.	0.8	4
78	The Evolution of a Kleptoparasitic System under Adaptive Dynamics. Journal of Mathematical Biology, 2007, 54, 151-177.	1.9	22
79	On Weak* Kadec–Klee Norms. Canadian Mathematical Bulletin, 2007, 50, 610-618.	0.5	0
80	Invariant subspaces of X** under the action of biconjugates. Czechoslovak Mathematical Journal, 2006, 56, 61-77.	0.3	0
81	Renorming James tree space. Transactions of the American Mathematical Society, 2005, 357, 3775-3788.	0.9	0
82	On Gâteaux Differentiability of Convex Functions in WCG Spaces. Canadian Mathematical Bulletin, 2005, 48, 455-459.	0.5	1
83	Pointwise uniformly rotund norms. Proceedings of the American Mathematical Society, 2005, 133, 2259-2266.	0.8	6
84	Renorming of \$C(K)\$ spaces. Proceedings of the American Mathematical Society, 2003, 131, 2063-2070.	0.8	2
85	Game-Theoretical Models in Biology. , 0, , .		135