Xiaoping Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7658085/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: Progressive accretionary history in the early to middle Palaeozoic. Chemical Geology, 2008, 247, 352-383.	1.4	296
2	Archean crustal evolution of the northern Tarim craton, NW China: Zircon U–Pb and Hf isotopic constraints. Precambrian Research, 2010, 180, 272-284.	1.2	294
3	Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 2007, 242, 22-39.	1.4	272
4	Reworking of the Tarim Craton by underplating of mantle plume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NW China. Precambrian Research, 2011, 187, 1-14.	1.2	234
5	Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off. Lithos, 2010, 119, 269-288.	0.6	205
6	Detrital zircon ages and Hf isotopes of the early Paleozoic flysch sequence in the Chinese Altai, NW China: New constrains on depositional age, provenance and tectonic evolution. Tectonophysics, 2010, 480, 213-231.	0.9	187
7	Detrital zircon age and Hf isotopic studies for metasedimentary rocks from the Chinese Altai: Implications for the Early Paleozoic tectonic evolution of the Central Asian Orogenic Belt. Tectonics, 2007, 26, .	1.3	177
8	Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: Evidence from zircon U–Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences, 2011, 42, 949-968.	1.0	176
9	Early Paleozoic sedimentary record of the Chinese Altai: Implications for its tectonic evolution. Sedimentary Geology, 2008, 208, 88-100.	1.0	173
10	Late Carboniferous high-Mg dioritic dikes in Western Junggar, NW China: Geochemical features, petrogenesis and tectonic implications. Gondwana Research, 2010, 17, 145-152.	3.0	172
11	Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth and Planetary Science Letters, 2010, 290, 481-492.	1.8	171
12	Geochemistry and U–Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction–accretion processes in the southern Central Asian Orogenic Belt. Gondwana Research, 2012, 21, 637-653.	3.0	158
13	Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Sciences, 2009, 52, 1345-1358.	0.9	155
14	Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Research, 2010, 18, 638-652.	3.0	142
15	Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai, NW China. Lithos, 2011, 127, 261-281.	0.6	135
16	Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: Implications for the reconstruction of the Columbia supercontinent. Precambrian Research, 2012, 222-223, 474-487.	1.2	122
17	Underplating of basaltic magmas and crustal growth in a continental arc: Evidence from Late Mesozoic intermediate–felsic intrusive rocks in southern Qiangtang, central Tibet. Lithos, 2016, 245, 223-242.	0.6	120
18	Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: Evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research, 2012, 22, 554-566.	3.0	116

#	Article	IF	CITATIONS
19	The discovery of the oldest rocks in the Kuluketage area and its geological implications. Science China Earth Sciences, 2011, 54, 342-348.	2.3	107
20	The Â390 Ma high-T metamorphic event in the Chinese Altai: A consequence of ridge-subduction?. Numerische Mathematik, 2010, 310, 1421-1452.	0.7	104
21	Precambrian detrital zircons in the Early Paleozoic Chinese Altai: Their provenance and implications for the crustal growth of central Asia. Precambrian Research, 2011, 189, 140-154.	1.2	104
22	Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: Implications for geodynamic change of the accretionary orogenic belt. Gondwana Research, 2012, 22, 681-698.	3.0	104
23	Zircon U–Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China. Precambrian Research, 2017, 301, 65-85.	1.2	104
24	Partial melting of thickened continental crust in central Tibet: Evidence from geochemistry and geochronology of Eocene adakitic rhyolites in the northern Qiangtang Terrane. Earth and Planetary Science Letters, 2015, 414, 30-44.	1.8	99
25	A Late Carboniferous–Early Permian slab window in the West Junggar of NW China: Geochronological and geochemical evidence from mafic to intermediate dikes. Lithos, 2013, 175-176, 146-162.	0.6	98
26	Keketuohai mafic–ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance. Chemical Geology, 2012, 294-295, 26-41.	1.4	94
27	New geochemical and combined zircon U–Pb and Lu–Hf isotopic data of orthogneisses in the northern Altyn Tagh, northern margin of the Tibetan plateau: Implication for Archean evolution of the Dunhuang Block and crust formation in NW China. Lithos, 2014, 200-201, 418-431.	0.6	93
28	Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review. Russian Geology and Geophysics, 2011, 52, 1619-1633.	0.3	90
29	Alternating Trench Advance and Retreat: Insights From Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt. Tectonics, 2018, 37, 2142-2164.	1.3	83
30	Where was the Ailaoshan Ocean and when did it open: A perspective based on detrital zircon U–Pb age and Hf isotope evidence. Gondwana Research, 2016, 36, 488-502.	3.0	76
31	Neoproterozoic granitic gneisses in the Chinese Central Tianshan Block: Implications for tectonic affinity and Precambrian crustal evolution. Precambrian Research, 2015, 269, 73-89.	1.2	75
32	Carboniferous bimodal volcanic rocks in the Eastern Tianshan, NW China: Evidence for arc rifting. Gondwana Research, 2017, 43, 92-106.	3.0	70
33	Juxtaposition of Barrovian and migmatite domains in the Chinese Altai: a result of crustal thickening followed by doming of partially molten lower crust. Journal of Metamorphic Geology, 2015, 33, 45-70.	1.6	68
34	Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites. Lithos, 2019, 326-327, 1-18.	0.6	67
35	Geochemistry, zircon U–Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 2011, 42, 969-985.	1.0	66
36	U–Pb ages and Hf isotopic record of zircons from the late Neoproterozoic and Silurian–Devonian sedimentary rocks of the western Yangtze Block: Implications for its tectonic evolution and continental affinity. Gondwana Research, 2016, 31, 184-199.	3.0	65

#	Article	IF	CITATIONS
37	Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: Implications for geodynamic evolution. Gondwana Research, 2015, 27, 1630-1645.	3.0	64
38	Detrital zircons from Neoproterozoic sedimentary rocks in the Yili Block: Constraints on the affinity of microcontinents in the southern Central Asian Orogenic Belt. Gondwana Research, 2016, 37, 39-52.	3.0	64
39	Petrogenesis of Early-Permian sanukitoids from West Junggar, Northwest China: Implications for Late Paleozoic crustal growth in Central Asia. Tectonophysics, 2015, 662, 385-397.	0.9	63
40	Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff. Lithos, 2018, 318-319, 47-59.	0.6	63
41	The high-grade Tseel Terrane in SW Mongolia: An Early Paleozoic arc system or a Precambrian sliver?. Lithos, 2012, 142-143, 95-115.	0.6	62
42	Geochemistry, zircon U–Pb ages and Lu–Hf isotopes of early Paleozoic plutons in the northwestern Chinese Tianshan: Petrogenesis and geological implications. Lithos, 2013, 182-183, 48-66.	0.6	62
43	Precambrian evolution of the Chinese Central Tianshan Block: Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles. Precambrian Research, 2017, 295, 24-37.	1.2	61
44	Andesitic crustal growth via mélange partial melting: Evidence from Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet. Geochemistry, Geophysics, Geosystems, 2016, 17, 1641-1659.	1.0	60
45	Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: implications for adakite and magmas from the MASH Zone. International Journal of Earth Sciences, 2009, 98, 1489-1510.	0.9	59
46	l-type granitoids in the eastern Yangtze Block: implications for the Early Paleozoic intracontinental orogeny in South China. Lithos, 2014, 206-207, 34-51.	0.6	58
47	Mantle contribution and tectonic transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from geochronology and geochemistry of Early Carboniferous to Early Permian felsic intrusions. Lithos, 2018, 304-307, 230-244.	0.6	58
48	Whole-rock Nd–Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: Constraints on the nature of the lower crust and tectonic setting. Gondwana Research, 2017, 47, 131-141.	3.0	57
49	Provenance study for the Paleozoic sedimentary rocks from the west Yangtze Block: Constraint on possible link of South China to the Gondwana supercontinent reconstruction. Precambrian Research, 2018, 309, 271-289.	1.2	56
50	Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2018, 153, 139-153.	1.0	55
51	Permian doleritic dikes in the Beishan Orogenic Belt, NW China: Asthenosphere–lithosphere interaction in response to slab break-off. Lithos, 2015, 233, 174-192.	0.6	54
52	When Did the Paleotethys Ailaoshan Ocean Close: New Insights From Detrital Zircon Uâ€₽b age and Hf Isotopes. Tectonics, 2019, 38, 1798-1823.	1.3	51
53	Provenance of Early Paleozoic metasediments in the central Chinese Altai: Implications for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt. Lithos, 2014, 210-211, 57-68.	0.6	49
54	Geochronology and geochemistry of Late Carboniferous dykes in the Aqishan–Yamansu belt, eastern Tianshan: Evidence for a post-collisional slab breakoff. Geoscience Frontiers, 2020, 11, 347-362.	4.3	44

#	Article	IF	CITATIONS
55	Geochronology, petrogenesis, and tectonic significance of the latest Devonian–early Carboniferous I-type granites in the Central Tianshan, NW China. Gondwana Research, 2017, 47, 188-199.	3.0	43
56	Petrogenesis of Neoproterozoic adakitic tonalites and high-K granites in the eastern Songpan-Ganze Fold Belt and implications for the tectonic evolution of the western Yangtze Block. Precambrian Research, 2015, 270, 181-203.	1.2	40
57	Revisiting the Precambrian evolution of the Southwestern Tarim terrane: Implications for its role in Precambrian supercontinents. Precambrian Research, 2019, 324, 18-31.	1.2	40
58	Dating and characterizing primary gas accumulation in Precambrian dolomite reservoirs, Central Sichuan Basin, China: Insights from pyrobitumen Re-Os and dolomite U-Pb geochronology. Precambrian Research, 2020, 350, 105897.	1.2	38
59	Thermochronological constraints on the late Paleozoic tectonic evolution of the southern Chinese Altai. Journal of Asian Earth Sciences, 2015, 113, 51-60.	1.0	37
60	Zircon U-Pb geochronology and Hf isotopic composition of granitiods in Russian Altai Mountain, Central Asian Orogenic Belt. Numerische Mathematik, 2014, 314, 580-612.	0.7	34
61	Two late Carboniferous belts of Nb-enriched mafic magmatism in the Eastern Tianshan: Heterogeneous mantle sources and geodynamic implications. Bulletin of the Geological Society of America, 2020, 132, 1863-1880.	1.6	33
62	S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition. Journal of Asian Earth Sciences, 2018, 153, 206-222.	1.0	32
63	Provenance and depositional age of Paleoproterozoic metasedimentary rocks in the Kuluketage Block, northern Tarim Craton: Implications for tectonic setting and crustal growth. Precambrian Research, 2015, 260, 76-90.	1.2	31
64	Magma mixing origin for high Ba–Sr granitic pluton in the Bayankhongor area, central Mongolia: Response to slab roll-back. Journal of Asian Earth Sciences, 2015, 113, 353-368.	1.0	31
65	A synthesis of zircon U–Pb ages and Hf isotopic compositions of granitoids from Southwest Mongolia: Implications for crustal nature and tectonic evolution of the Altai Superterrane. Lithos, 2015, 232, 131-142.	0.6	31
66	Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau. Lithos, 2017, 284-285, 709-729.	0.6	31
67	Genesis and evolution of framboidal pyrite and its implications for the ore-forming process of Carlin-style gold deposits, southwestern China. Ore Geology Reviews, 2018, 102, 426-436.	1.1	31
68	Rhenium–osmium and molybdenum isotope systematics of black shales from the Lower Cambrian Niutitang Formation, SW China: Evidence of a well oxygenated ocean at ca. 520â€⁻Ma. Chemical Geology, 2018, 499, 26-42.	1.4	31
69	Middle Jurassic MORB-type gabbro, high-Mg diorite, calc-alkaline diorite and granodiorite in the Ando area, central Tibet: Evidence for a slab roll-back of the Bangong-Nujiang Ocean. Lithos, 2016, 264, 315-328.	0.6	30
70	Paleoproterozoic S-type granites from the Helanshan Complex in Inner Mongolia: Constraints on the provenance and the Paleoproterozoic evolution of the Khondalite Belt, North China Craton. Precambrian Research, 2017, 299, 195-209.	1.2	30
71	From Breakup of Nuna to Assembly of Rodinia: A Link Between the Chinese Central Tianshan Block and Fennoscandia. Tectonics, 2019, 38, 4378-4398.	1.3	30
72	Ultrahighâ€ŧemperature metamorphism in the Helanshan complex of the Khondalite Belt, North China Craton: Petrology and phase equilibria of spinelâ€bearing pelitic granulites. Journal of Metamorphic Geology, 2018, 36, 1199-1220.	1.6	29

#	Article	IF	CITATIONS
73	Pulsed oxygenation events drove progressive oxygenation of the early Mesoproterozoic ocean. Earth and Planetary Science Letters, 2021, 559, 116754.	1.8	28
74	Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan–Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean. Lithos, 2017, 290-291, 1-17.	0.6	27
75	Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt (CAOB). Journal of Asian Earth Sciences, 2018, 153, 1-8.	1.0	27
76	Archean to Paleoproterozoic continental crust growth in the Western Block of North China: Constraints from zircon Hf isotopic and whole-rock Nd isotopic data. Precambrian Research, 2017, 303, 105-116.	1.2	26
77	Devonian to carboniferous tectonic evolution of the Kangguer Ocean in the Eastern Tianshan, NW China: Insights from three episodes of granitoids. Lithos, 2019, 350-351, 105243.	0.6	25
78	Molybdenum and boron isotopic evidence for carbon-recycling via carbonate dissolution in subduction zones. Geochimica Et Cosmochimica Acta, 2020, 278, 340-352.	1.6	25
79	Petrogenesis of late Paleozoic tholeiitic, Nb-enriched, calc-alkaline and adakitic rocks in southwestern Mongolia: Implications for intra-oceanic arc evolution. Lithos, 2014, 202-203, 413-428.	0.6	23
80	Continental crust growth induced by slab breakoff in collisional orogens: Evidence from the Eocene Gangdese granitoids and their mafic enclaves, South Tibet. Gondwana Research, 2018, 64, 35-49.	3.0	23
81	Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science (Wuhan, China), 2019, 30, 1243-1252.	1.1	23
82	Subduction polarity of the Ailaoshan Ocean (eastern Paleotethys): Constraints from detrital zircon U-Pb and Hf-O isotopes for the Longtan Formation. Bulletin of the Geological Society of America, 2020, 132, 987-996.	1.6	23
83	Postcollisional delamination and partial melting of enriched lithospheric mantle: Evidence from Oligocene (ca. 30 Ma) potassium-rich lavas in the Gemuchaka area of the central Qiangtang Block, Tibet. Bulletin of the Geological Society of America, 2019, 131, 1385-1408.	1.6	22
84	Arc Andesitic Rocks Derived From Partial Melts of Mélange Diapir in Subduction Zones: Evidence From Wholeâ€Rock Geochemistry and Srâ€Ndâ€Mo Isotopes of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Journal of Geophysical Research: Solid Earth, 2019, 124, 456-475.	1.4	22
85	Petrogenesis of the Devonian high-Mg rock association and its tectonic implication for the Chinese Altai orogenic belt, NW China. Journal of Asian Earth Sciences, 2015, 113, 61-74.	1.0	21
86	Geochronology and geochemistry of Late Ordovician–Early Devonian gneissic granites in the Kumishi area, northern margin of the South Tianshan Belt: Constraints on subduction process of the South Tianshan Ocean. Journal of Asian Earth Sciences, 2015, 113, 293-309.	1.0	21
87	Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai. Lithos, 2017, 284-285, 207-221.	0.6	21
88	Paleozoic adakitic rocks in the northern Altyn Tagh, northwest China: Evidence for progressive crustal thickening beneath the Dunhuang Block. Lithos, 2017, 272-273, 1-15.	0.6	21
89	Petrogenesis of the Permian Intermediate-Mafic Dikes in the Chinese Altai, Northwest China: Implication for a Postaccretion Extensional Scenario. Journal of Geology, 2016, 124, 481-500.	0.7	20
90	Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB). Tectonophysics, 2016, 674, 182-194.	0.9	20

#	Article	IF	CITATIONS
91	Tracking the multiple-stage exhumation history and magmatic-hydrothermal events of the West Junggar region, NW China: Evidence from 40Ar/39Ar and (U-Th)/He thermochronology. Journal of Asian Earth Sciences, 2018, 159, 130-141.	1.0	20
92	Rheniumâ€Osmium Isotope Measurements of Geological Reference Material <scp>BIR</scp> â€1a: Evaluation of Homogeneity and Implications for Method Validation and Quality Control. Geostandards and Geoanalytical Research, 2017, 41, 649-658.	1.7	19
93	Arc magmatism associated with steep subduction: Insights from trace element and Sr–Nd–Hf–B isotope systematics. Journal of Geophysical Research: Solid Earth, 2017, 122, 1816-1834.	1.4	18
94	Source characteristics and provenance of metasedimentary rocks from the Kangxiwa Group in the Western Kunlun Orogenic Belt, NW China: Implications for tectonic setting and crustal growth. Gondwana Research, 2017, 46, 43-56.	3.0	17
95	Tracing changes in monsoonal precipitation using Mg isotopes in Chinese loess deposits. Geochimica Et Cosmochimica Acta, 2019, 259, 1-16.	1.6	17
96	Late Cretaceous Neo-Tethyan slab roll-back: Evidence from zircon U-Pb-O and whole-rock geochemical and Sr-Nd-Fe isotopic data of adakitic plutons in the Himalaya-Tibetan Plateau. Bulletin of the Geological Society of America, 2020, 132, 409-426.	1.6	16
97	Paleoproterozoic tectono-metamorphic evolution of the southernmost North China Craton: New insights from the metamorphic evolution and geochronology of the Taihua complex at Lushan area. Precambrian Research, 2020, 342, 105693.	1.2	16
98	Recycled oceanic crust in the form of pyroxenite contributing to the Cenozoic continental basalts in central Asia: new perspectives from olivine chemistry and whole-rock B–Mo isotopes. Contributions To Mineralogy and Petrology, 2019, 174, 1.	1.2	15
99	Precambrian crustal evolution of the southwestern Tarim Craton, NW China: Constraints from new detrital zircon ages and Hf isotopic data of the Neoproterozoic metasedimentary rocks. Precambrian Research, 2019, 334, 105473.	1.2	15
100	Oceanic lithospheric mantle beneath the continental crust of the Chinese Altai. Journal of the Geological Society, 2011, 168, 995-1000.	0.9	14
101	The source and tectonic implications of late Carboniferous–early Permian A-type granites and dikes from the eastern Alataw Mountains, Xinjiang: geochemical and Sr–Nd–Hf isotopic constraints. International Geology Review, 2017, 59, 1310-1323.	1.1	14
102	Intraoceanic back-arc magma diversity: Insights from a relic of the Proto-Tethys oceanic lithosphere in the western Qilian Orogen, NW China. Chemical Geology, 2020, 550, 119756.	1.4	14
103	Paleozoic crustal evolution and tectonic switching in the Northeastern Tianshan: insights from zircon Hf isotopes of granitoids. Journal of the Geological Society, 2021, 178, .	0.9	14
104	Comparative analysis of groundwater fluorine levels and other characteristics in two areas of Laizhou Bay and its explanation on fluorine enrichment. Water Science and Technology: Water Supply, 2015, 15, 384-394.	1.0	13
105	Phase equilibrium modelling and SHRIMP zircon U–Pb dating of medium-pressure pelitic granulites in the Helanshan complex of the Khondalite Belt, North China Craton, and their tectonic implications. Precambrian Research, 2018, 314, 62-75.	1.2	13
106	Fission track thermochronology of the Tuwu-Yandong porphyry Cu deposits, NW China: Constraints on preservation and exhumation. Ore Geology Reviews, 2019, 113, 103104.	1.1	13
107	Detrital zircon U-Pb ages and whole-rock geochemistry of early Paleozoic metasedimentary rocks in the Mongolian Altai: Insights into the tectonic affinity of the whole Altai-Mongolian terrane. Bulletin of the Geological Society of America, 2020, 132, 477-494.	1.6	13
108	Late Carboniferous adakitic granodiorites in the Qiongkusitai area, western Tianshan, NW China: Implications for partial melting of lower crust in the southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2016, 124, 42-54.	1.0	12

#	Article	IF	CITATIONS
109	Petrogenesis and geodynamic implications of two episodes of Permian and Triassic high-silica granitoids in the Chinese Altai, Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2019, 184, 103978.	1.0	12
110	Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area, South China: Evidence for redox environment corresponding to the Cambrian Explosion. Gondwana Research, 2019, 69, 45-55.	3.0	12
111	Origin of Late Permian syenite and gabbro from the Panxi rift, SW China: The fractionation process of mafic magma in the inner zone of the Emeishan mantle plume. Lithos, 2019, 346-347, 105160.	0.6	11
112	In-site mineral geochemistry and whole-rock Fe isotopes of the quartz-magnetite-pyroxene rocks in the Wuyang area, North China Craton: Constraints on the genesis of the pyroxene-rich BIF. Precambrian Research, 2019, 333, 105445.	1.2	11
113	Miocene adakites in south Tibet: Partial melting of the thickened Lhasa juvenile mafic lower crust with the involvement of ancient Indian continental crust compositions. Bulletin of the Geological Society of America, 2020, 132, 1273-1290.	1.6	11
114	Depositional age and geochemistry of the 2.44–2.32ÂGa Granular Iron Formation in the Songshan Group, North China Craton: Tracing the effects of atmospheric oxygenation on continental weathering and seawater environment. Precambrian Research, 2021, 357, 106142.	1.2	11
115	Timing of two separate granulite-facies metamorphic events in the Helanshan complex, North China Craton: Constraints from monazite and zircon U–Pb dating of pelitic granulites. Lithos, 2019, 350-351, 105216.	0.6	10
116	Sr-Nd-Pb isotopic compositions of the lower crust beneath northern Tarim: insights from igneous rocks in the Kuluketage area, NW China. Mineralogy and Petrology, 2017, 111, 237-252.	0.4	9
117	Petrogenesis, tectonic setting and formation age of the metaperidotites in the Lajishan ophiolite, Central Qilian Block, NW China. Journal of Asian Earth Sciences, 2019, 186, 104076.	1.0	9
118	Tectonic evolution of the North Qinling Orogenic Belt, Central China: Insights from metamafic rocks of the Songshugou Complex. Geological Journal, 2019, 54, 2382-2399.	0.6	9
119	Chlorite as an exploration indicator for concealed skarn mineralization: Perspective from the Tonglushan Cu–Au–Fe skarn deposit, Eastern China. Ore Geology Reviews, 2020, 126, 103778.	1.1	9
120	Provenance and Hf isotopic variation of Precambrian detrital zircons from the Qilian Orogenic Belt, NW China: Evidence to the transition from breakup of Columbia to the assembly of Rodinia. Precambrian Research, 2021, 357, 106153.	1.2	9
121	Neoproterozoic gabbro–granite association from the Micangshan area, northern Yangtze Block: Implication for crustal growth in an active continental margin. Geological Journal, 2018, 53, 2471-2486.	0.6	8
122	Hydrous melting of metasomatized mantle wedge and crustal growth in the post-collisional stage: Evidence from Late Triassic monzodiorite and its mafic enclaves in the south Qinling (central China). Lithosphere, 2019, 11, 3-20.	0.6	8
123	Determination of Rhenium in Geological Samples by Isotope Dilution–Multicollector–Inductively Coupled Plasma-Mass Spectrometry with Novel Chromatographic Separation. Analytical Letters, 2018, 51, 1122-1146.	1.0	7
124	Trace elemental modification in magnetite from high-grade metamorphosed BIFs in the southern North China Craton. Ore Geology Reviews, 2019, 112, 103019.	1.1	7
125	Origin of Late Permian amphibole syenite from the Panxi area, SW China: high degree fractional crystallization of basaltic magma in the inner zone of the Emeishan mantle plume. International Geology Review, 2020, 62, 210-224.	1.1	7
126	The cause for Nuna breakup in the Early to Middle Mesoproterozoic. Precambrian Research, 2021, 362, 106287.	1.2	6

#	Article	IF	CITATIONS
127	Paleoproterozoic tectonic evolution of the Khondalite Belt in the North China Craton: Constraints from the geochronology and geochemistry of 1.9–2.3ÂGa felsic and basic intrusive rocks in the Jining area. Precambrian Research, 2022, 371, 106570.	1.2	6
128	Earlyâ€Paleozoic mafic intrusion in North Qinling (Central China): Implication for the initiation backâ€arc system along the Shangdan suture zone. Geological Journal, 2020, 55, 4733-4747.	0.6	4
129	Mo isotopic response to the end of Neoproterozoic Marinoan glaciation: Evidence from a sedimentary profile in South China. Precambrian Research, 2020, 339, 105609.	1.2	4
130	Zircon U–Pb geochronology and clockwise P–T evolution of garnet-bearing migmatites from the Qinling complex in the Weiziping area of the Qinling Orogen, Central China: Implications for thermal relaxation after crustal thickening. Journal of Asian Earth Sciences, 2020, 195, 104354.	1.0	4
131	Thermotectonic evolution of the Paleozoic granites along the Shangdan suture zone (central China): Crustal growth and differentiation by magma underplating in an orogenic belt. Bulletin of the Geological Society of America, 2021, 133, 523-538.	1.6	4
132	Geochemical characteristics of the early Neoarchean komatiite from the North China Craton: Evidence for plume–craton interaction. Precambrian Research, 2021, 357, 106143.	1.2	4
133	Episodic Neoproterozoic extension-related magmatism in the Altyn Tagh, NW China: implications for extension and breakup processes of Rodinia supercontinent. International Geology Review, 2022, 64, 1474-1489.	1.1	3
134	Geochronology and petrogenesis of paleoproterozoic post-collisional quartz monzodiorites from the Helanshan Complex, North China Craton: Implications for crust–mantle interaction. Precambrian Research, 2021, 352, 106011.	1.2	3
135	Late Neoproterozoic to early Paleozoic paleogeographic position of the Yangtze block and the change of tectonic setting in its northwestern margin: Evidence from detrital zircon U-Pb ages and Hf isotopes of sedimentary rocks. Bulletin of the Geological Society of America, 0, , .	1.6	3
136	Petrogenesis of Early Cretaceous granitoids and mafic microgranular enclaves from the giant Tonglushan Cu–Au–Fe skarn orefield, Eastern China. Lithos, 2021, 392-393, 106103.	0.6	3
137	Serpentinite as a tracer for tectonic setting and mantle metasomatism of ophiolites: A case study of the Aoyougou ophiolite in the Qilian Orogenic Belt, NW China. Gondwana Research, 2022, 105, 1-11.	3.0	3
138	Geochronology and geochemistry of 2.3ÂGa mafic intrusions in the Dengfeng area: Evidence for early Paleoproterozoic subduction in the southern North China Craton. Precambrian Research, 2022, 375, 106668.	1.2	3
139	Geochronology and petrogenesis of Neoproterozoic mafic dykes in the Aktash Tagh, SE Tarim Craton: New evidence for its tectonic setting and location in the Rodinia supercontinent. Precambrian Research, 2022, 378, 106754.	1.2	3
140	Triassic depleted lithospheric mantle underneath the Paleozoic Chinese Altai orogen: Evidence from MORB-like basalts. Journal of Asian Earth Sciences, 2019, 185, 104021.	1.0	2
141	Paleoproterozoic A-type granite from the southwestern margin of the North China block: high temperature melting of tonalitic crust in extensional setting. International Geology Review, 2020, 62, 614-629.	1.1	2
142	Precambrian crust growth and reworking of the eastern Yangtze Craton: insights from xenocrystic zircons in the lamprophyres from the Middle–Lower Yangtze Belt, China. Precambrian Research, 2021, 355, 106121.	1.2	2
143	Mineral chemistry and geochemistry of serpentinites from the Bianmagou ophiolite in the North Qilian Belt, <scp>NW</scp> China: Implications for protoliths, melt extractions, and melt/fluid metasomatism. Geological Journal, 202 <u>1, 56, 5163-5175.</u>	0.6	2
144	High-temperature melting of different crustal levels in the inner zone of the Emeishan large igneous province: Constraints from the Permian ferrosyenite and granite from the Panxi region. Lithos, 2021, 402-403, 105979.	0.6	2

#	Article	IF	CITATIONS
145	Clockwise P-T-t path for Paleoproterozoic metamorphism in the Huoqiu Metamorphic Complex of the southeastern North China Craton. Lithos, 2021, 386-387, 106014.	0.6	1
146	Phase Equilibrium and Trace-Element Modeling of the Partial Melting of Basaltic Rocks under Low Pressure: Implications for Plagiogranite Generation. Journal of Petrology, 2021, 62, .	1.1	1
147	Early Silurian adakitic highâ€Mg diorite from the Longshan area: Implication for melting of mantle lithosphere in the southâ€eastern Qilian Orogenic Belt. Geological Journal, 2019, 54, 2261-2273.	0.6	0
148	Early Cretaceous granodiorite and its mafic enclaves from the Shuiyu area (Southern North China) Tj ETQq0 0 0 r	gBT /Overl 1.1	ock 10 Tf 50

149	FOREARC MANTLE METASOMATISM BY 11B-DEPLETED FLUIDS FROM A HIGHLY DEHYDRATED SLAB: A SNAPSHOT OF SLAB ROLL-BACK?. Geodinamika I Tektonofizika, 2017, 8, 615-617.	0.3	0
150	Reply to the comment on "The cause for Nuna breakup in the early to middle Mesoproterozoic―by Johansson et al. (2021). Precambrian Research, 2021, 367, 106462.	1.2	0
151	Carboniferous variation of crustal thickness and subduction angles in Eastern Tianshan, NW China: evidence from the petrogenesis of the magmatic rocks in the Aqishan–Yamansu Belt. International Geology Review, 0 1-24	1.1	0