Yoshihito Shigihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7658043/publications.pdf

Version: 2024-02-01

526264 567247 36 836 15 27 citations h-index g-index papers 42 42 42 882 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distinctive effects of executive dysfunction and loss of learning/memory abilities on resting-state brain activity. Scientific Reports, 2022, 12, 3459.	3.3	11
2	Two Distinct Neural Mechanisms Underlying Acupuncture Analgesia. Frontiers in Pain Research, 2022, 3, .	2.0	2
3	Mouth magnetoencephalography: A unique perspective on the human hippocampus. Neurolmage, 2021, 225, 117443.	4.2	56
4	Resting-State Magnetoencephalography Reveals Neurobiological Bridges Between Pain and Cognitive Impairment. Pain and Therapy, 2021, 10, 349-361.	3.2	9
5	Specific Oscillatory Power Changes and Their Efficacy for Determining Laterality in Mesial Temporal Lobe Epilepsy: A Magnetoencephalographic Study. Frontiers in Neurology, 2021, 12, 617291.	2.4	6
6	The association between carotid blood flow and resting-state brain activity in patients with cerebrovascular diseases. Scientific Reports, 2021, 11, 15225.	3.3	4
7	The Menstrual Cycle Alters Resting-State Cortical Activity: A Magnetoencephalography Study. Frontiers in Human Neuroscience, 2021, 15, 652789.	2.0	14
8	Exploring the Interactions Between Neurophysiology and Cognitive and Behavioral Changes Induced by a Non-pharmacological Treatment: A Network Approach. Frontiers in Aging Neuroscience, 2021, 13, 696174.	3.4	5
9	Effect of segment length, sampling frequency, and imaging modality on the estimation of measures of brain meta-state activation: an MEG/EEG study., 2021, 2021, 315-318.		O
10	High Frequential Resolution Networks: Considerations on a New Functional Brain Connectivity Framework., 2021, 2021, 722-725.		1
11	Non-pharmacological treatment changes brain activity in patients with dementia. Scientific Reports, 2020, 10, 6744.	3.3	25
12	Consistency of local activation parameters at sensor- and source-level in neural signals. Journal of Neural Engineering, 2020, 17, 056020.	3.5	14
13	Age- and gender-specific characteristics of the resting-state brain activity: a magnetoencephalography study. Aging, 2020, 12, 21613-21637.	3.1	25
14	Predicting the outcome of non-pharmacological treatment for patients with dementia-related mild cognitive impairment. Aging, 2020, 12, 24101-24116.	3.1	10
15	Towards Automatic Artifact Rejection in Resting-State MEG Recordings: Evaluating the Performance of the SOUND Algorithm., 2019, 2019, 4807-4810.		3
16	Early visual cortical responses produced by checkerboard pattern stimulation. NeuroImage, 2016, 134, 532-539.	4.2	19
17	Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome. Neurolmage: Clinical, 2015, 9, 355-368.	2.7	24
18	Parallel processing of face and house stimuli by V1 and specialized visual areas: a magnetoencephalographic (MEG) study. Frontiers in Human Neuroscience, 2014, 8, 901.	2.0	19

#	Article	IF	Citations
19	Parallel processing in the brain's visual form system: an fMRI study. Frontiers in Human Neuroscience, 2014, 8, 506.	2.0	15
20	Two types of mental fatigue affect spontaneous oscillatory brain activities in different ways. Behavioral and Brain Functions, 2013, 9, 2.	3.3	50
21	Neural effects of prolonged mental fatigue: A magnetoencephalography study. Brain Research, 2013, 1529, 105-112.	2.2	32
22	Two different types of mental fatigue produce different styles of task performance. Neurology Psychiatry and Brain Research, 2013, 19, 5-11.	2.0	37
23	Parallelism in the brain's visual form system. European Journal of Neuroscience, 2013, 38, 3712-3720.	2.6	20
24	Effect of mental fatigue on the central nervous system: an electroencephalography study. Behavioral and Brain Functions, 2012, 8, 48.	3.3	96
25	Imaging of Gastrointestinal Absorption and Biodistribution of an Orally Administered Probe Using Positron Emission Tomography in Humans. Clinical Pharmacology and Therapeutics, 2012, 91, 653-659.	4.7	38
26	Fatigue-Associated Alterations of Cognitive Function and Electroencephalographic Power Densities. PLoS ONE, 2012, 7, e34774.	2.5	32
27	PET Imaging–Based Evaluation of Hepatobiliary Transport in Humans with (15 <i>>R</i>)- ¹¹ C-TIC-Me. Journal of Nuclear Medicine, 2012, 53, 741-748.	5.0	101
28	Effects of daily levels of fatigue and acutely induced fatigue on the visual evoked magnetic response. Brain Research, 2012, 1457, 44-50.	2.2	8
29	Central regulation of physical fatigue via mirror visual feedback. European Journal of Sport Science, 2011, 11, 171-175.	2.7	11
30	Gustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography. PLoS ONE, 2011, 6, e21736.	2.5	16
31	Central inhibition regulates motor output during physical fatigue. Brain Research, 2011, 1412, 37-43.	2.2	24
32	Low visual information-processing speed and attention are predictors of fatigue in elementary and junior high school students. Behavioral and Brain Functions, 2011, 7, 20.	3.3	11
33	Relationship Between Fatigue and Photosensitivity. Behavioral Medicine, 2010, 36, 109-112.	1.9	7
34	Hazardous nature of high-temporal-frequency strobe light stimulation: neural mechanisms revealed by magnetoencephalography. Neuroscience, 2010, 166, 482-490.	2.3	4
35	Relationships between dietary habits and the prevalence of fatigue in medical students. Nutrition, 2008, 24, 985-989.	2.4	69
36	Quantitative analysis of MEG using modified sLORETA for clinical application. Clinical Neurophysiology, 2008, 119, 1917-1922.	1.5	15