
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuromodulation for Pain: A Comprehensive Survey and Systematic Review of Clinical Trials and Connectomic Analysis of Brain Targets. Stereotactic and Functional Neurosurgery, 2022, 100, 14-25.	0.8	5
2	Local Field Potential-Based Programming: AÂProof-of-Concept Pilot Study. Neuromodulation, 2022, 25, 271-275.	0.4	21
3	Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach. Journal of Parkinson's Disease, 2022, 12, 117-128.	1.5	5
4	Normative connectomes and their use in DBS. , 2022, , 245-274.		5
5	Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain, 2022, 145, 362-377.	3.7	17
6	Transcranial Direct Current Stimulation Reduces Anxiety, Depression and Plasmatic Corticosterone in a Rat Model of Atypical Generalized Epilepsy. Neuroscience, 2022, 480, 32-41.	1.1	1
7	<scp>Singleâ€Trajectory Multipleâ€Target</scp> Deep Brain Stimulation for Parkinsonian Mobility and Cognition. Movement Disorders, 2022, 37, 635-640.	2.2	10
8	3T MRI of rapid brain activity changes driven by subcallosal cingulate deep brain stimulation. Brain, 2022, 145, 2214-2226.	3.7	16
9	Deep brain stimulation for extreme behaviors associated with autism spectrum disorder converges on a common pathway: a systematic review and connectomic analysis. Journal of Neurosurgery, 2022, , 1-10.	0.9	10
10	Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcriptomics. Cancers, 2022, 14, 464.	1.7	9
11	Deep brain stimulation targets in epilepsy: Systematic review and metaâ€analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia, 2022, 63, 513-524.	2.6	54
12	Habenular Involvement in Response to Subcallosal Cingulate Deep Brain Stimulation for Depression. Frontiers in Psychiatry, 2022, 13, 810777.	1.3	7
13	Lateralized Subthalamic Stimulation for Axial Dysfunction in Parkinson's Disease: A Randomized Trial. Movement Disorders, 2022, , .	2.2	5
14	Letter: Unforeseen Hurdles Associated With Magnetic Resonance Imaging in Patients With Deep Brain Stimulation Devices. Neurosurgery, 2022, Publish Ahead of Print, .	0.6	1
15	Brain Structures and Networks Underlying Treatment Response to Deep Brain Stimulation Targeting the Inferior Thalamic Peduncle in Obsessive-Compulsive Disorder. Stereotactic and Functional Neurosurgery, 2022, 100, 236-243.	0.8	5
16	Identifying the neural network for neuromodulation in epilepsy through connectomics and graphs. Brain Communications, 2022, 4, .	1.5	10
17	Probing responses to deep brain stimulation with functional magnetic resonance imaging. Brain Stimulation, 2022, 15, 683-694.	0.7	22
18	Unilateral Campotomy of Forel for Acquired Hemidystonia: An Open-Label Clinical Trial. Neurosurgery, 2022, Publish Ahead of Print, .	0.6	1

#	Article	IF	CITATIONS
19	Response: Deep brain stimulation targets in epilepsy: Systematic review and metaâ€analysis of anterior and centromedian thalamic nuclei and hippocampus. Epilepsia, 2022, 63, 1885-1886.	2.6	4
20	ldiopathic Parkinson's disease and chronic pain in the era of deep brain stimulation: a systematic review and meta-analysis. Journal of Neurosurgery, 2022, 137, 1821-1830.	0.9	7
21	Editorial: The Habenula and Its Role in Neuropsychiatric Symptoms. Frontiers in Behavioral Neuroscience, 2022, 16, .	1.0	0
22	A Cautionary Tale of Magnetic Resonanceâ€Guided Focused Ultrasound Thalamotomyâ€Induced White Matter Lesions. Movement Disorders, 2022, 37, 1953-1955.	2.2	0
23	Longitudinal Changes After Amygdala Surgery for Intractable Aggressive Behavior: Clinical, Imaging Genetics, and Deformation-Based Morphometry Study—A Case Series. Neurosurgery, 2021, 88, E158-E169.	0.6	15
24	Probabilistic Mapping of Deep Brain Stimulation: Insights from 15 Years of Therapy. Annals of Neurology, 2021, 89, 426-443.	2.8	68
25	Theta Burst Deep Brain Stimulation in Movement Disorders. Movement Disorders Clinical Practice, 2021, 8, 282-285.	0.8	8
26	Deep brain stimulation of the brainstem. Brain, 2021, 144, 712-723.	3.7	27
27	Brain structures and networks responsible for stimulationâ€induced memory flashbacks during forniceal deep brain stimulation for Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 777-787.	0.4	23
28	An exploratory study into the influence of laterality and location of hippocampal sclerosis on seizure prognosis and global cortical thinning. Scientific Reports, 2021, 11, 4686.	1.6	2
29	Probabilistic characterisation of deep brain stimulation in patients with tardive syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 909-911.	0.9	1
30	Surgical targeting of large hypothalamic hamartomas and seizure-freedom following MR-guided laser interstitial thermal therapy. Epilepsy and Behavior, 2021, 116, 107774.	0.9	6
31	Sign-specific stimulation â€~hot' and â€~cold' spots in Parkinson's disease validated with machine lea Brain Communications, 2021, 3, fcab027.	rning. 1.9	20
32	Lesions causing self-injurious behavior engage putative networks modulated by deep brain stimulation. Brain Stimulation, 2021, 14, 273-276.	0.7	3
33	Mapping efficacious deep brain stimulation for pediatric dystonia. Journal of Neurosurgery: Pediatrics, 2021, 27, 346-356.	0.8	10
34	Lateralizing magnetic resonance imaging findings in mesial temporal sclerosis and correlation with seizure and neurocognitive outcome after temporal lobectomy. Epilepsy Research, 2021, 171, 106562.	0.8	1
35	A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. Journal of Neurosurgery, 2021, 135, 1445-1458.	0.9	14
36	Mapping autonomic, mood and cognitive effects of hypothalamic region deep brain stimulation. Brain, 2021, 144, 2837-2851.	3.7	14

#	Article	IF	CITATIONS
37	Evolution of the Neurosurgeon's Role in Clinical Trials for Glioblastoma: A Systematic Overview of the Clinicaltrials.Gov Database. Neurosurgery, 2021, 89, 196-203.	0.6	2
38	Predicting optimal deep brain stimulation parameters for Parkinson's disease using functional MRI and machine learning. Nature Communications, 2021, 12, 3043.	5.8	130
39	Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimulation, 2021, 14, 513-530.	0.7	37
40	Bilateral Amygdala Radio-Frequency Ablation for Refractory Aggressive Behavior Alters Local Cortical Thickness to a Pattern Found in Non-refractory Patients. Frontiers in Human Neuroscience, 2021, 15, 653631.	1.0	10
41	Potential optimization of focused ultrasound capsulotomy for obsessive compulsive disorder. Brain, 2021, 144, 3529-3540.	3.7	23
42	Acute low frequency dorsal subthalamic nucleus stimulation improves verbal fluency in Parkinson's disease. Brain Stimulation, 2021, 14, 754-760.	0.7	12
43	Bilateral Focused Ultrasound Thalamotomy for Essential Tremor (<scp>BESTâ€FUS</scp> Phase 2 Trial). Movement Disorders, 2021, 36, 2653-2662.	2.2	51
44	Flexible vs. standard subthalamic stimulation in Parkinson disease: A double-blind proof-of-concept cross-over trial. Parkinsonism and Related Disorders, 2021, 89, 93-97.	1.1	6
45	Deep Brain Stimulation of the Habenula: Systematic Review of the Literature and Clinical Trial Registries. Frontiers in Psychiatry, 2021, 12, 730931.	1.3	20
46	Impact of Mesial Temporal Lobe Resection on Brain Structure in Medically Refractory Epilepsy. World Neurosurgery, 2021, 152, e652-e665.	0.7	3
47	Case report: 5 Years follow-up on posterior hypothalamus deep brain stimulation for intractable aggressive behaviour associated with drug-resistant epilepsy. Brain Stimulation, 2021, 14, 1201-1204.	0.7	5
48	Blood oxygen level-dependent (BOLD) response patterns with thalamic deep brain stimulation in patients with medically refractory epilepsy. Epilepsy and Behavior, 2021, 122, 108153.	0.9	13
49	Neuromodulatory treatments for psychiatric disease: A comprehensive survey of the clinical trial landscape. Brain Stimulation, 2021, 14, 1393-1403.	0.7	14
50	Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biological Psychiatry, 2021, 90, 328-341.	0.7	38
51	Modulation of CNS Functions by Deep Brain Stimulation: Insights Provided byÂMolecular Imaging. , 2021, , 1177-1244.		3
52	Trends in Clinical Trials for Spinal Cord Stimulation. Stereotactic and Functional Neurosurgery, 2021, 99, 123-134.	0.8	13
53	Involvement of the habenula in the pathophysiology of autism spectrum disorder. Scientific Reports, 2021, 11, 21168.	1.6	13
54	Focused Ultrasound Thalamotomy Sensory Side Effects Follow the Thalamic Structural Homunculus. Neurology: Clinical Practice, 2021, 11, e497-e503.	0.8	0

#	Article	IF	CITATIONS
55	Longitudinal Changes After Amygdala Surgery for Intractable Aggressive Behavior: Clinical, Imaging Genetics, and Deformation-Based Morphometry Study—A Case Series. Neurosurgery, 2021, 89, S97-S97.	0.6	0
56	Focused Ultrasound Thalamotomy Sensory Side Effects Follow the Thalamic Structural Homunculus. Neurology: Clinical Practice, 2021, 11, e497-e503.	0.8	1
57	A Network-Based Approach to Glioma Surgery: Insights from Functional Neurosurgery. Cancers, 2021, 13, 6127.	1.7	9
58	Large-scale analyses of the relationship between sex, age and intelligence quotient heterogeneity and cortical morphometry in autism spectrum disorder. Molecular Psychiatry, 2020, 25, 614-628.	4.1	141
59	Probing the circuitry of panic with deep brain stimulation: Connectomic analysis and review of the literature. Brain Stimulation, 2020, 13, 10-14.	0.7	26
60	Lesion Network Mapping Analysis Identifies Potential Cause of Postoperative Depression in a Case of Cingulate Low-Grade Glioma. World Neurosurgery, 2020, 133, 278-282.	0.7	6
61	Aggressiveness after centromedian nucleus stimulation engages prefrontal thalamocortical circuitry. Brain Stimulation, 2020, 13, 357-359.	0.7	11
62	Investigating microstructural variation in the human hippocampus using non-negative matrix factorization. NeuroImage, 2020, 207, 116348.	2.1	43
63	Tight Coupling between Morphological Features of the Central Sulcus and Somatomotor Body Representations: A Combined Anatomical and Functional MRI Study. Cerebral Cortex, 2020, 30, 1843-1854.	1.6	25
64	Clinical trials for deep brain stimulation: Current state of affairs. Brain Stimulation, 2020, 13, 378-385.	0.7	61
65	Multimodal MRI for MRgFUS in essential tremor: post-treatment radiological markers of clinical outcome. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 921-927.	0.9	34
66	Fully Automated Habenula Segmentation Provides Robust and Reliable Volume Estimation Across Large Magnetic Resonance Imaging Datasets, Suggesting Intriguing Developmental Trajectories in Psychiatric Disease. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 923-929.	1.1	15
67	Identification of neural networks preferentially engaged by epileptogenic mass lesions through lesion network mapping analysis. Scientific Reports, 2020, 10, 10989.	1.6	16
68	Refractoriness of aggressive behaviour to pharmacological treatment: cortical thickness analysis in autism spectrum disorder. BJPsych Open, 2020, 6, e85.	0.3	9
69	Endovascular deep brain stimulation: Investigating the relationship between vascular structures and deep brain stimulation targets. Brain Stimulation, 2020, 13, 1668-1677.	0.7	12
70	A high-resolution in vivo magnetic resonance imaging atlas of the human hypothalamic region. Scientific Data, 2020, 7, 305.	2.4	87
71	An MRI-Derived Neuroanatomical Atlas of the Fischer 344 Rat Brain. Scientific Reports, 2020, 10, 6952.	1.6	28
72	The Ventral Part of Dorsolateral Frontal Area 8A Regulates Visual Attentional Selection and the Dorsal Part Auditory Attentional Selection. Neuroscience, 2020, 441, 209-216.	1.1	10

#	Article	IF	CITATIONS
73	Improving Safety of MRI in Patients with Deep Brain Stimulation Devices. Radiology, 2020, 296, 250-262.	3.6	40
74	Greater cortical thickness in individuals with ASD. Molecular Psychiatry, 2020, 25, 507-508.	4.1	3
75	Magnetic Resonance-Guided Focused Ultrasound Thalamotomy to Treat Essential Tremor in Nonagenarians. Stereotactic and Functional Neurosurgery, 2020, 98, 182-186.	0.8	14
76	Mapping the network underpinnings of central poststroke pain and analgesic neuromodulation. Pain, 2020, 161, 2805-2819.	2.0	21
77	Cholinergic dysfunction in the dorsal striatum promotes habit formation and maladaptive eating. Journal of Clinical Investigation, 2020, 130, 6616-6630.	3.9	29
78	Area 8A within the Posterior Middle Frontal Gyrus Underlies Cognitive Selection between Competing Visual Targets. ENeuro, 2020, 7, ENEURO.0102-20.2020.	0.9	13
79	Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. Journal of Neurosurgery, 2020, 133, 1002-1009.	0.9	20
80	Safety assessment of spine MRI in deep brain stimulation patients. Journal of Neurosurgery: Spine, 2020, 32, 973-983.	0.9	6
81	Functional MRI Safety and Artifacts during Deep Brain Stimulation: Experience in 102 Patients. Radiology, 2019, 293, 174-183.	3.6	51
82	Neuroanatomical Correlates of Response to Focused Ultrasound Thalamotomy in Essential Tremor. Neurosurgery, 2019, 66, 310-362.	0.6	0
83	Fornix-Region Deep Brain Stimulation–Induced Memory Flashbacks in Alzheimer's Disease. New England Journal of Medicine, 2019, 381, 783-785.	13.9	36
84	Network Basis of Seizures Induced by Deep Brain Stimulation: Literature Review and Connectivity Analysis. World Neurosurgery, 2019, 132, 314-320.	0.7	23
85	Hand preference and local asymmetry in cerebral cortex, basal ganglia, and cerebellar white matter. Brain Structure and Function, 2019, 224, 2899-2905.	1.2	14
86	Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Current Neurology and Neuroscience Reports, 2019, 19, 42.	2.0	29
87	Longitudinal assessment of the neuroanatomical consequences of deep brain stimulation: Application of fornical DBS in an Alzheimer's mouse model. Brain Research, 2019, 1715, 213-223.	1.1	20
88	ACTR-28. A CALL FOR INCREASED ROLE OF NEUROSURGEONS IN SURGICAL TRIALS FOR NON-GLIOMATOUS PRIMARY CNS TUMORS: A SYSTEMATIC REVIEW OF THE CLINICALTRIALS.GOV DATABASE. Neuro-Oncology, 2019, 21, vi19-vi19.	0.6	0
89	ACTR-27. EVOLUTION OF THE NEUROSURGEON'S ROLE IN CLINICAL TRIALS FOR GBM: A SYSTEMATIC OVERVIEW OF THE CLINICALTRIALS.GOV DATABASE. Neuro-Oncology, 2019, 21, vi18-vi19.	0.6	0
90	NIMG-25. LESION-NETWORK ANALYSIS TO IDENTIFY PREFERENTIALLY-ENGAGED NETWORKS IN EPILEPTOGENIC TUMORS. Neuro-Oncology, 2019, 21, vi166-vi167.	0.6	0

#	Article	IF	CITATIONS
91	P.301 Hippocampal subfield volumetric changes following electroconvulsive therapy in patients with late-life depression. European Neuropsychopharmacology, 2019, 29, S214-S215.	0.3	1
92	Lesion Network Localization of Seizure Freedom following MR-guided Laser Interstitial Thermal Ablation. Scientific Reports, 2019, 9, 18598.	1.6	21
93	Contributions of a high-fat diet to Alzheimer's disease-related decline: A longitudinal behavioural and structural neuroimaging study in mouse models. NeuroImage: Clinical, 2019, 21, 101606.	1.4	59
94	Longitudinal changes in cocaine intake and cognition are linked to cortical thickness adaptations in cocaine users. NeuroImage: Clinical, 2019, 21, 101652.	1.4	45
95	Focused ultrasound thalamotomy location determines clinical benefits in patients with essential tremor. Brain, 2018, 141, 3405-3414.	3.7	129
96	T128. Medial Temporal Lobe and Subcortical Shape Changes Following Electroconvulsive Therapy in Late-Life Depression. Biological Psychiatry, 2018, 83, S178.	0.7	0
97	Oxytocin and Gynecomastia: Correlation or Causality?. Cureus, 2018, 10, e2661.	0.2	1
98	Early-in-life neuroanatomical and behavioural trajectories in a triple transgenic model of Alzheimer's disease. Brain Structure and Function, 2018, 223, 3365-3382.	1.2	26
99	Hippocampal shape alterations are associated with regional Aî ² load in cognitively normal elderly individuals. European Journal of Neuroscience, 2017, 45, 1241-1251.	1.2	9
100	Gestational ketogenic diet programs brain structure and susceptibility to depression & anxiety in the adult mouse offspring. Brain and Behavior, 2015, 5, e00300.	1.0	60
101	Hippocampal volumes differ across the mouse estrous cycle, can change within 24hours, and associate with cognitive strategies. Neurolmage, 2013, 83, 593-598.	2.1	60
102	Wanted dead or alive? The tradeoff between in-vivo versus ex-vivo MR brain imaging in the mouse. Frontiers in Neuroinformatics, 2012, 6, 6.	1.3	75
103	Comparison of pieceâ€wise linear, linear, and nonlinear atlasâ€ŧoâ€patient warping techniques: Analysis of the labeling of subcortical nuclei for functional neurosurgical applications. Human Brain Mapping, 2009, 30, 3574-3595.	1.9	66
104	Towards a validation of atlas warping techniques. Medical Image Analysis, 2008, 12, 713-726.	7.0	90
105	Revealing Modular Architecture of Human Brain Structural Networks by Using Cortical Thickness from MRI. Cerebral Cortex, 2008, 18, 2374-2381.	1.6	426
106	Precentral sulcal complex of the human brain: Morphology and statistical probability maps. Journal of Comparative Neurology, 2005, 493, 334-356.	0.9	50
107	Anatomical and Electrophysiological Validation of an Atlas for Neurosurgical Planning. Lecture Notes in Computer Science, 2005, 8, 394-401.	1.0	13
108	A Functional Connectome of Parkinson's Disease Patients Prior to Deep Brain Stimulation: A Tool for Disease-Specific Connectivity Analyses. Frontiers in Neuroscience, 0, 16, .	1.4	3