
Yizhong Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization. Energy Conversion and Management, 2016, 112, 41-48.	4.4	159
2	Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing. Energy and Buildings, 2015, 87, 116-122.	3.1	152
3	Orangeâ€Emissive Carbon Quantum Dots: Toward Application in Wound pH Monitoring Based on Colorimetric and Fluorescent Changing. Small, 2019, 15, e1902823.	5.2	142
4	Mxene (Ti3C2T)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors. Chemical Engineering Journal, 2021, 413, 127524.	6.6	122
5	Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Optical Materials, 2018, 85, 329-336.	1.7	97
6	Ti3C2T /carbon nanotube/porous carbon film for flexible supercapacitor. Chemical Engineering Journal, 2022, 427, 132002.	6.6	95
7	Preparation of lignin-based porous carbon with hierarchical oxygen-enriched structure for high-performance supercapacitors. Journal of Colloid and Interface Science, 2019, 540, 524-534.	5.0	81
8	Preparing hierarchical porous carbon aerogels based on enzymatic hydrolysis lignin through ambient drying for supercapacitor electrodes. Microporous and Mesoporous Materials, 2018, 265, 258-265.	2.2	70
9	Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing. Carbon, 2019, 146, 636-649.	5.4	68
10	Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons. Waste Management, 2017, 67, 155-162.	3.7	62
11	Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 227, 117659.	2.0	58
12	Microwave-assisted KOH activation from lignin into hierarchically porous carbon with super high specific surface area by utilizing the dual roles of inorganic salts: Microwave absorber and porogen. Microporous and Mesoporous Materials, 2020, 300, 110178.	2.2	56
13	Microwave-assisted synthesis of polyamine-functionalized carbon dots from xylan and their use for the detection of tannic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 301-308.	2.0	51
14	Constructing a Novel Electroluminescent Device with High-Temperature and High-Humidity Resistance based on a Flexible Transparent Wood Film. ACS Applied Materials & Interfaces, 2019, 11, 36010-36019.	4.0	46
15	Rapid single-step synthesis of porous carbon from an agricultural waste for energy storage application. Waste Management, 2020, 102, 330-339.	3.7	43
16	Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification. International Journal of Biological Macromolecules, 2019, 141, 747-755.	3.6	41
17	Carbonized wood loaded with carbon dots for preparation long-term shape-stabilized composite phase change materials with superior thermal energy conversion capacity. Renewable Energy, 2021, 174, 19-30.	4.3	38
18	Template-free and fast one-step synthesis from enzymatic hydrolysis lignin to hierarchical porous carbon for CO2 capture. Microporous and Mesoporous Materials, 2019, 280, 57-65.	2.2	37

#	Article	IF	CITATIONS
19	Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma. Applied Surface Science, 2017, 407, 412-417.	3.1	35
20	Flexible Transparent Sliced Veneer for Alternating Current Electroluminescent Devices. ACS Sustainable Chemistry and Engineering, 2019, 7, 11464-11473.	3.2	32
21	Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohydrate Polymers, 2019, 219, 229-239.	5.1	31
22	Fast one-pot microwave preparation and plasma modification of porous carbon from waste lignin for energy storage application. Waste Management, 2019, 89, 129-140.	3.7	30
23	Synthesis of carbon dots with high photocatalytic reactivity by tailoring heteroatom doping. Journal of Colloid and Interface Science, 2022, 605, 330-341.	5.0	30
24	Electrospun Enzymatic Hydrolysis Lignin-Based Carbon Nanofibers as Binder-Free Supercapacitor Electrodes with High Performance. Polymers, 2018, 10, 1306.	2.0	27
25	One-pot synthesis of multi-functional cellulose-based ionic conductive organohydrogel with low-temperature strain sensitivity. Carbohydrate Polymers, 2021, 251, 117019.	5.1	27
26	Manufacturing and interfacial bonding behavior of plasma-treated-carbon fiber reinforced veneer-based composites. Composite Structures, 2019, 226, 111203.	3.1	26
27	Evaluation of fiber surface modification via air plasma on the interfacial behavior of glass fiber reinforced laminated veneer lumber composites. Construction and Building Materials, 2020, 233, 117315.	3.2	26
28	Simple pyrolysis of alginate-based hydrogel cross-linked by bivalent ions into highly porous carbons for energy storage. International Journal of Biological Macromolecules, 2020, 158, 265-274.	3.6	25
29	Clean plasma modification for recycling waste plastic bags: From improving interfacial adhesion with wood towards fabricating formaldehyde-free plywood. Journal of Cleaner Production, 2020, 269, 122196.	4.6	25
30	Properties of formaldehyde-free environmentally friendly lignocellulosic composites made from poplar fibres and oxygen-plasma-treated enzymatic hydrolysis lignin. Composites Part B: Engineering, 2013, 53, 369-375.	5.9	24
31	Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose. Carbohydrate Polymers, 2020, 233, 115632.	5.1	23
32	Synergistical enhancement of the electrochemical properties of lignin-based activated carbon using NH ₃ ·H ₂ O dielectric barrier discharge plasma. RSC Advances, 2017, 7, 7392-7400.	1.7	22
33	Sustainable biomass-based hierarchical porous carbon for energy storage: A novel route to maintain electrochemically attractive natural structure of precursor. Science of the Total Environment, 2020, 747, 141923.	3.9	22
34	Fast oxygen, nitrogen co-functionalization on electrospun lignin-based carbon nanofibers membrane via air plasma for energy storage application. International Journal of Biological Macromolecules, 2020, 143, 434-442.	3.6	20
35	TiO2-SiO2 nanocomposite aerogel loaded in melamine-impregnated paper for multi-functionalization: Formaldehyde degradation and smoke suppression. Construction and Building Materials, 2018, 161, 381-388.	3.2	18
36	Urea Formaldehyde Resin Resultant Plywood with Rapid Formaldehyde Release Modified by Tunnel-Structured Sepiolite. Polymers, 2019, 11, 1286.	2.0	17

#	Article	IF	CITATIONS
37	Atmospheric Low-Temperature Plasma-Induced Changes in the Structure of the Lignin Macromolecule: An Experimental and Theoretical Investigation. Journal of Agricultural and Food Chemistry, 2020, 68, 451-460.	2.4	17
38	Design and build an elastic crosslinked network to strengthen and toughen soybean-meal based bioadhesive using organo-sepiolite and greener crosslinker triglycidylamine. Polymer Testing, 2020, 89, 106648.	2.3	17
39	Surface modification of poplar veneer by means of radio frequency oxygen plasma (RF-OP) to improve interfacial adhesion with urea-formaldehyde resin. Holzforschung, 2015, 69, 193-198.	0.9	16
40	Direct Microwave Conversion from Lignin to Micro/Meso/Macroporous Carbon for Highâ€Performance Symmetric Supercapacitors. ChemElectroChem, 2019, 6, 4789-4800.	1.7	15
41	Rapid synthesis of chitinâ€based porous carbons with high yield, high nitrogen retention, and low cost for highâ€rate supercapacitors. International Journal of Energy Research, 2020, 44, 1167-1178.	2.2	15
42	A clean and industrially applicable approach for the production of copper-doped and core-shell structured porous carbon microspheres as supercapacitor electrode materials. Journal of Cleaner Production, 2021, 282, 124534.	4.6	15
43	Development of an industrial applicable dielectric barrier discharge (DBD) plasma treatment for improving bondability of poplar veneer. Holzforschung, 2016, 70, 683-690.	0.9	14
44	Fast formation of hydrophobic coating on wood surface via an energy-saving dielectric barrier discharges plasma. Progress in Organic Coatings, 2018, 125, 128-136.	1.9	14
45	Fast modification on wheat straw outer surface by water vapor plasma and its application on composite material. Scientific Reports, 2018, 8, 2279.	1.6	13
46	Nitrogen/sulfur Co-doping strategy to synthesis green-yellow emitting carbon dots derived from xylose: Toward application in pH sensing. Journal of Luminescence, 2020, 227, 117489.	1.5	11
47	Lignocellulose-based free-standing hybrid electrode with natural vessels-retained, hierarchically pores-constructed and active materials-loaded for high-performance hybrid oxide supercapacitor. International Journal of Biological Macromolecules, 2021, 187, 903-910.	3.6	11
48	Porosity-adjustable MXene film with transverse and longitudinal ion channels for flexible supercapacitors. Microporous and Mesoporous Materials, 2021, 326, 111389.	2.2	11
49	GLASS TRANSITION OF OXYGEN PLASMA TREATED ENZYMATIC HYDROLYSIS LIGNIN. BioResources, 2012, 7, .	0.5	10
50	Comparative investigation into the interfacial adhesion of plywood prepared by air spray atomization and roller coating. European Journal of Wood and Wood Products, 2021, 79, 887-896.	1.3	9
51	Large-scale and high-resolution visualization of static mechanical properties of wood-adhesive interphase utilizing nanoindentation mapping. Wood Science and Technology, 2022, 56, 1029-1045.	1.4	8
52	Enhancing resin efficiency in plywood production via DBD plasma treatment and atomized air spray of UF resin. Holzforschung, 2018, 72, 1057-1062.	0.9	7
53	Boosting the photothermal conversion efficiency of MXene film by porous wood for Light-driven soft actuators. Chemical Engineering Journal, 2022, 450, 138013.	6.6	7
54	Fast atmospheric plasma treatment of LLDPE film for preparing formaldehyde emission-free plywood. European Journal of Wood and Wood Products, 2020, 78, 705-714.	1.3	6

#	Article	IF	CITATIONS
55	Cellulose nanocrystals concentration and oil-water ratio for solid-liquid controllable emulsion polymerization. International Journal of Biological Macromolecules, 2021, 191, 414-421.	3.6	6
56	Improvement of the Bondability of Wheat Straw Treated by Water Vapor Plasma for Bio-composites Manufacture. BioResources, 2016, 12, .	0.5	6
57	Sol-Gel condensation of temperature sensitive and shape stabilized phase change materials for thermal energy storage. Thermochimica Acta, 2020, 693, 178758.	1.2	5
58	Water Evaporation Triggered Selfâ€Assembly of MXene on Nonâ€Carbonized Wood with Wellâ€Aligned Channels as Sizeâ€Customizable Freeâ€Standing Electrode for Supercapacitors. Energy and Environmental Materials, 2023, 6, .	7.3	4