
Vincent Corbel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects, 2021, 12, 191.	2.2	34
2	Serological biomarker for assessing human exposure to Aedes mosquito bites during a randomized vector control intervention trial in northeastern Thailand. PLoS Neglected Tropical Diseases, 2021, 15, e0009440.	3.0	8
3	Influence of Host-Related Factors and Exposure to Mosquito Bites on the Dynamics of Antibody Response to Plasmodium falciparum Antigens. Tropical Medicine and Infectious Disease, 2021, 6, 185.	2.3	3
4	Complex relationships between Aedes vectors, socio-economics and dengue transmission—Lessons learned from a case-control study in northeastern Thailand. PLoS Neglected Tropical Diseases, 2020, 14, e0008703.	3.0	18
5	New insights into malaria vector bionomics in Lao PDR: a nationwide entomology survey. Malaria Journal, 2020, 19, 396.	2.3	10
6	Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand. Parasites and Vectors, 2020, 13, 525.	2.5	5
7	Cancer and mosquitoes – An unsuspected close connection. Science of the Total Environment, 2020, 743, 140631.	8.0	3
8	Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Neglected Tropical Diseases, 2019, 13, e0007615.	3.0	162
9	Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: evidence from health facility data from Benin. Malaria Journal, 2019, 18, 37.	2.3	20
10	The impact of targeted malaria elimination with mass drug administrations on falciparum malaria in Southeast Asia: A cluster randomised trial. PLoS Medicine, 2019, 16, e1002745.	8.4	105
11	Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control. PLoS Neglected Tropical Diseases, 2019, 13, e0007852.	3.0	61
12	Alternative strategies for mosquito-borne arbovirus control. PLoS Neglected Tropical Diseases, 2019, 13, e0006822.	3.0	165
13	Contribution of Asymptomatic Plasmodium Infections to the Transmission of Malaria in Kayin State, Myanmar. Journal of Infectious Diseases, 2019, 219, 1499-1509.	4.0	50
14	Potential herd protection against Plasmodium falciparum infections conferred by mass antimalarial drug administrations. ELife, 2019, 8, .	6.0	14
15	Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infectious Diseases, The, 2018, 18, 640-649.	9.1	188
16	Assessing dengue transmission risk and a vector control intervention using entomological and immunological indices in Thailand: study protocol for a cluster-randomized controlled trial. Trials, 2018, 19, 122.	1.6	9
17	Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional elimination programme. Lancet, The, 2018, 391, 1916-1926.	13.7	131
18	Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nature Communications, 2018, 9, 4982.	12.8	90

#	Article	lF	CITATIONS
19	Integrated Aedes management for the control of Aedes-borne diseases. PLoS Neglected Tropical Diseases, 2018, 12, e0006845.	3.0	153
20	Field efficacy of a new deltamethrin long lasting insecticidal net (LifeNet©) against wild pyrethroid-resistant Anopheles gambiae in Benin. BMC Public Health, 2018, 18, 947.	2.9	8
21	Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Research, 2018, 3, 109.	1.8	21
22	Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages. Wellcome Open Research, 2018, 3, 109.	1.8	22
23	Plasmodium Infections in Anopheles Mosquitoes in Ubon Ratchathani Province, Northeastern Thailand During a Malaria Outbreak. Journal of the American Mosquito Control Association, 2018, 34, 11-17.	0.7	7
24	Anopheles Salivary Biomarker as a Proxy for Estimating Plasmodium falciparum Malaria Exposure on the Thailand–Myanmar Border. American Journal of Tropical Medicine and Hygiene, 2018, 99, 350-356.	1.4	19
25	Anopheles Salivary Biomarker to Assess Malaria Transmission Risk Along the Thailand-Myanmar Border. Journal of Infectious Diseases, 2017, 215, jiw543.	4.0	44
26	International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasites and Vectors, 2017, 10, 278.	2.5	23
27	Insecticide resistance in malaria vectors along the Thailand-Myanmar border. Parasites and Vectors, 2017, 10, 165.	2.5	32
28	Abundance and distribution of <i>Anopheles</i> mosquitoes in a malaria endemic area along the Thai-Lao border. Journal of Vector Ecology, 2017, 42, 325-334.	1.0	15
29	Insecticide resistance status of malaria vectors in Lao PDR. PLoS ONE, 2017, 12, e0175984.	2.5	19
30	Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 2017, 11, e0005625.	3.0	504
31	Status of insecticide resistance in Anopheles mosquitoes in Ubon Ratchathani province, Northeastern Thailand. Malaria Journal, 2017, 16, 299.	2.3	31
32	Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: A pilot trial in four villages of Eastern Myanmar. Wellcome Open Research, 2017, 2, 81.	1.8	71
33	In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: An integrated next-generation sequencing approach. PLoS Neglected Tropical Diseases, 2017, 11, e0005526.	3.0	73
34	Remote Effect of Insecticide-Treated Nets and the Personal Protection against Malaria Mosquito Bites. PLoS ONE, 2017, 12, e0170732.	2.5	10
35	Modeling spatial variation in risk of presence and insecticide resistance for malaria vectors in Laos. PLoS ONE, 2017, 12, e0177274.	2.5	12
36	Dynamics of pyrethroid resistance in malaria vectors in southern Benin following a large scale implementation of vector control interventions. Parasites and Vectors, 2016, 9, 385.	2.5	43

#	Article	IF	CITATIONS
37	Tracking Insecticide Resistance in Mosquito Vectors of Arboviruses: The Worldwide Insecticide resistance Network (WIN). PLoS Neglected Tropical Diseases, 2016, 10, e0005054.	3.0	43
38	Operational Assessment of Long-Lasting Insecticidal Nets by Using an Anopheles Salivary Biomarker of Human–Vector Contact. American Journal of Tropical Medicine and Hygiene, 2016, 95, 1376-1382.	1.4	17
39	Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae. Scientific Reports, 2016, 6, 29755.	3.3	65
40	Effectiveness of insecticidal nets on uncomplicated clinical malaria: a case–control study for operational evaluation. Malaria Journal, 2016, 15, 102.	2.3	17
41	When intensity of deltamethrin resistance in Anopheles gambiae s.l. leads to loss of Long Lasting Insecticidal Nets bio-efficacy: a case study in north Cameroon. Parasites and Vectors, 2016, 9, 132.	2.5	23
42	Do holes in long-lasting insecticidal nets compromise their efficacy against pyrethroid resistant AnophelesÂgambiae and CulexÂquinquefasciatus? Results from a release–recapture study in experimental huts. Malaria Journal, 2015, 14, 332.	2.3	22
43	Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Malaria Journal, 2015, 14, 279.	2.3	46
44	The Repellent DEET Potentiates Carbamate Effects via Insect Muscarinic Receptor Interactions: An Alternative Strategy to Control Insect Vector-Borne Diseases. PLoS ONE, 2015, 10, e0126406.	2.5	33
45	Identification of chemical constituents of Zanthoxylum heitzii stem bark and their insecticidal activity against the malaria mosquito Anopheles gambiae. Parasites and Vectors, 2015, 8, 503.	2.5	18
46	Identifying genomic changes associated with insecticide resistance in the dengue mosquito <i>Aedes aegypti</i> by deep targeted sequencing. Genome Research, 2015, 25, 1347-1359.	5.5	151
47	Field Efficacy of Vectobac CR as a Mosquito Larvicide for the Control of Anopheline and Culicine Mosquitoes in Natural Habitats in Benin, West Africa. PLoS ONE, 2014, 9, e87934.	2.5	25
48	Insecticidal Activities of Bark, Leaf and Seed Extracts of Zanthoxylum heitzii against the African Malaria Vector Anopheles gambiae. Molecules, 2014, 19, 21276-21290.	3.8	19
49	Molecular characterization of DDT resistance in Anopheles gambiae from Benin. Parasites and Vectors, 2014, 7, 409.	2.5	32
50	Modeling the seasonality of Anopheles gambiae s.s. biting rates in a South Benin sanitary zone. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 237-243.	1.8	3
51	Insecticide exposure impacts vector–parasite interactions in insecticide-resistant malaria vectors. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140389.	2.6	55
52	Anopheles gambiae salivary protein expression modulated by wild Plasmodium falciparum infection: highlighting of new antigenic peptides as candidates of An. gambiae bites. Parasites and Vectors, 2014, 7, 599.	2.5	16
53	Reports of long-lasting insecticidal bed nets catching on fire: a threat to bed net users and to successful malaria control?. Malaria Journal, 2014, 13, 247.	2.3	4
54	Spatio-temporal analysis of abundances of three malaria vector species in southern Benin using zero-truncated models. Parasites and Vectors, 2014, 7, 103.	2.5	15

#	Article	IF	CITATIONS
55	Microdistribution of the resistance of malaria vectors to deltamethrin in the region of Plateau (southeastern Benin) in preparation for an assessment of the impact of resistance on the effectiveness of Long Lasting Insecticidal Nets (LLINs). BMC Infectious Diseases, 2014, 14, 103.	2.9	16
56	Interplay Between Plasmodium Infection and Resistance to Insecticides in Vector Mosquitoes. Journal of Infectious Diseases, 2014, 210, 1464-1470.	4.0	59
57	Salivary Gland Proteome Analysis Reveals Modulation of Anopheline Unique Proteins in Insensitive Acetylcholinesterase Resistant Anopheles gambiae Mosquitoes. PLoS ONE, 2014, 9, e103816.	2.5	9
58	Human Exposure to Early Morning Anopheles funestus Biting Behavior and Personal Protection Provided by Long-Lasting Insecticidal Nets. PLoS ONE, 2014, 9, e104967.	2.5	91
59	Modelling the risk of being bitten by malaria vectors in a vector control area in southern Benin, west Africa. Parasites and Vectors, 2013, 6, 71.	2.5	14
60	Effects of pyrethroid resistance on the cost effectiveness of a mass distribution of long-lasting insecticidal nets: a modelling study. Malaria Journal, 2013, 12, 77.	2.3	61
61	Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites and Vectors, 2013, 6, 280.	2.5	189
62	Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia. Trends in Parasitology, 2013, 29, 623-633.	3.3	43
63	Synergies in integrated malaria control – Authors' reply. Lancet Infectious Diseases, The, 2013, 13, 112-113.	9.1	2
64	Reply to Seraphin. Journal of Infectious Diseases, 2013, 207, 1184-1185.	4.0	0
65	Investigating the genetics of B ti resistance using m RNA tag sequencing: application on laboratory strains and natural populations of the dengue vector A edes aegypti. Evolutionary Applications, 2013, 6, 1012-1027.	3.1	9
66	Insecticide Resistance Alleles Affect Vector Competence of Anopheles gambiae s.s. for Plasmodium falciparum Field Isolates. PLoS ONE, 2013, 8, e63849.	2.5	109
67	Insecticide-Driven Patterns of Genetic Variation in the Dengue Vector Aedes aegypti in Martinique Island. PLoS ONE, 2013, 8, e77857.	2.5	24
68	Efficacy of Olyset® Plus, a New Long-Lasting Insecticidal Net Incorporating Permethrin and Piperonil-Butoxide against Multi-Resistant Malaria Vectors. PLoS ONE, 2013, 8, e75134.	2.5	96
69	Changes in Anopheles funestus Biting Behavior Following Universal Coverage of Long-Lasting Insecticidal Nets in Benin. Journal of Infectious Diseases, 2012, 206, 1622-1629.	4.0	286
70	First Attempt To Validate Human IgG Antibody Response to Nterm-34kDa Salivary Peptide as Biomarker for Evaluating Exposure to Aedes aegypti Bites. PLoS Neglected Tropical Diseases, 2012, 6, e1905.	3.0	41
71	Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infectious Diseases, The, 2012, 12, 617-626.	9.1	172
72	Host feeding patterns and preference of Anopheles minimus (Diptera: Culicidae) in a malaria endemic area of western Thailand: baseline site description. Parasites and Vectors, 2012, 5, 114.	2.5	34

#	Article	IF	CITATIONS
73	Culex genome is not just another genome for comparative genomics. Parasites and Vectors, 2012, 5, 63.	2.5	15
74	Modeling the Influence of Local Environmental Factors on Malaria Transmission in Benin and Its Implications for Cohort Study. PLoS ONE, 2012, 7, e28812.	2.5	47
75	Dry Season Determinants of Malaria Disease and Net Use in Benin, West Africa. PLoS ONE, 2012, 7, e30558.	2.5	37
76	Use of a Mixture Statistical Model in Studying Malaria Vectors Density. PLoS ONE, 2012, 7, e50452.	2.5	5
77	Optimized Pan-species and Speciation Duplex Real-time PCR Assays for Plasmodium Parasites Detection in Malaria Vectors. PLoS ONE, 2012, 7, e52719.	2.5	28
78	Insecticide Resistance in the Dengue Vector Aedes aegypti from Martinique: Distribution, Mechanisms and Relations with Environmental Factors. PLoS ONE, 2012, 7, e30989.	2.5	183
79	Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies). American Journal of Tropical Medicine and Hygiene, 2011, 84, 118-126.	1.4	65
80	Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?. Trends in Parasitology, 2011, 27, 91-98.	3.3	903
81	The importance of considering community-level effects when selecting insecticidal malaria vector products. Parasites and Vectors, 2011, 4, 160.	2.5	33
82	Insecticide susceptibility of Aedes aegypti and Aedes albopictus in Central Africa. Parasites and Vectors, 2011, 4, 79.	2.5	114
83	Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa. Malaria Journal, 2011, 10, 261.	2.3	112
84	Anopheles gambiae mosquito isolated neurons: A new biological model for optimizing insecticide/repellent efficacy. Journal of Neuroscience Methods, 2011, 200, 68-73.	2.5	12
85	Pyrethroid Resistance Reduces the Efficacy of Space Sprays for Dengue Control on the Island of Martinique (Caribbean). PLoS Neglected Tropical Diseases, 2011, 5, e1202.	3.0	63
86	Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus. PLoS ONE, 2011, 6, e17496.	2.5	21
87	Indoor Use of Plastic Sheeting Impregnated with Carbamate Combined with Long-Lasting Insecticidal Mosquito Nets for the Control of Pyrethroid-Resistant Malaria Vectors. American Journal of Tropical Medicine and Hygiene, 2010, 83, 266-270.	1.4	41
88	Malaria infection and disease in an area with pyrethroid-resistant vectors in southern Benin. Malaria Journal, 2010, 9, 380.	2.3	67
89	Culicidae diversity, malaria transmission and insecticide resistance alleles in malaria vectors in Ouidah-Kpomasse-Tori district from Benin (West Africa): A pre-intervention study. Parasites and Vectors, 2010, 3, 83.	2.5	77
90	Field evaluation of pyriproxyfen and spinosad mixture for the control of insecticide resistant Aedes aegypti in Martinique (French West Indies). Parasites and Vectors, 2010, 3, 88.	2.5	48

#	Article	IF	CITATIONS
91	Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0) against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa. Malaria Journal, 2010, 9, 113.	2.3	101
92	Insecticide resistance status in Anopheles gambiae in southern Benin. Malaria Journal, 2010, 9, 83.	2.3	87
93	Pyrethrum: A Mixture of Natural Pyrethrins Has Potential for Malaria Vector Control. Journal of Medical Entomology, 2009, 46, 516-522.	1.8	28
94	Does kdr genotype predict insecticide-resistance phenotype in mosquitoes?. Trends in Parasitology, 2009, 25, 213-219.	3.3	138
95	Innovative applications for insect viruses: towards insecticide sensitization. Trends in Biotechnology, 2009, 27, 190-198.	9.3	29
96	Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics, 2009, 10, 494.	2.8	163
97	Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biology, 2009, 7, 47.	3.8	156
98	Multi-function oxidases are responsible for the synergistic interactions occurring between repellents and insecticides in mosquitoes. Parasites and Vectors, 2009, 2, 17.	2.5	21
99	Managing insecticide resistance in malaria vectors by combining carbamate-treated plastic wall sheeting and pyrethroid-treated bed nets. Malaria Journal, 2009, 8, 233.	2.3	57
100	Synergy between Repellents and Organophosphates on Bed Nets: Efficacy and Behavioural Response of Natural Free-Flying An. gambiae Mosquitoes. PLoS ONE, 2009, 4, e7896.	2.5	19
101	Reduced Efficacy of Pyrethroid Space Sprays for Dengue Control in an Area of Martinique with Pyrethroid Resistance. American Journal of Tropical Medicine and Hygiene, 2009, 80, 745-751.	1.4	54
102	Reduced efficacy of pyrethroid space sprays for dengue control in an area of Martinique with pyrethroid resistance. American Journal of Tropical Medicine and Hygiene, 2009, 80, 745-51.	1.4	32
103	Costs and benefits of multiple resistance to insecticides for Culex quinquefasciatus mosquitoes. BMC Evolutionary Biology, 2008, 8, 104.	3.2	110
104	Median knock-down time as a new method for evaluating insecticide-treated textiles for mosquito control. Malaria Journal, 2008, 7, 114.	2.3	20
105	Laboratory Evaluation of Cyromazine Against Insecticide-Susceptible and -Resistant Mosquito Larvae. Journal of the American Mosquito Control Association, 2008, 24, 123-126.	0.7	6
106	Mixture for Controlling Insecticide-Resistant Malaria Vectors. Emerging Infectious Diseases, 2008, 14, 1707-1714.	4.3	34
107	Evaluation of Indoxacarb, an Oxadiazine Insecticide for the Control of Pyrethroid-Resistant <i>Anopheles gambiae</i> (Diptera: Culicidae). Journal of Medical Entomology, 2007, 44, 270-276.	1.8	30
108	Evaluation of Indoxacarb, an Oxadiazine Insecticide for the Control of Pyrethroid-Resistant <i>Anopheles gambiae</i> (Diptera: Culicidae). Journal of Medical Entomology, 2007, 44, 270-276.	1.8	24

#	Article	IF	CITATIONS
109	Synergy between repellents and non-pyrethroid insecticides strongly extends the efficacy of treated nets against Anopheles gambiae. Malaria Journal, 2007, 6, 38.	2.3	38
110	Reduced Efficacy of Insecticide-treated Nets and Indoor Residual Spraying for Malaria Control in Pyrethroid Resistance Area, Benin. Emerging Infectious Diseases, 2007, 13, 199-206.	4.3	425
111	Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system. NeuroToxicology, 2006, 27, 508-519.	3.0	58
112	Laboratory Evaluation of Pyriproxyfen and Spinosad, Alone and in Combination, Against <1>Aedes aegypti 1 Larvae. Journal of Medical Entomology, 2006, 43, 1190-1194.	1.8	41
113	Laboratory Evaluation of Pyriproxyfen and Spinosad, Alone and in Combination, Against <i>Aedes aegypti</i> Larvae. Journal of Medical Entomology, 2006, 43, 1190-1194.	1.8	55
114	Assessment of Laboratory and Field Assays of Sunlight-Induced Killing of Mosquito Larvae by Photosensitizers. Journal of Medical Entomology, 2005, 42, 652-656.	1.8	37
115	Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes. Malaria Journal, 2005, 4, 25.	2.3	96
116	COMBINATION OF A NON-PYRETHROID INSECTICIDE AND A REPELLENT: A NEW APPROACH FOR CONTROLLING KNOCKDOWN-RESISTANT MOSQUITOES. American Journal of Tropical Medicine and Hygiene, 2005, 72, 739-744.	1.4	53
117	Combination of a non-pyrethroid insecticide and a repellent: a new approach for controlling knockdown-resistant mosquitoes. American Journal of Tropical Medicine and Hygiene, 2005, 72, 739-44.	1.4	21
118	Efficacy of insecticide mixtures against larvae of Culex quinquefasciatus (Say) (Diptera: Culicidae) resistant to pyrethroids and carbamates. Pest Management Science, 2004, 60, 375-380.	3.4	47
119	Dinotefuran: A Potential Neonicotinoid Insecticide Against Resistant Mosquitoes. Journal of Medical Entomology, 2004, 41, 712-717.	1.8	95
120	Dosage-dependent effects of permethrin-treated nets on the behaviour of Anopheles gambiae and the selection of pyrethroid resistance. Malaria Journal, 2004, 3, 22.	2.3	68
121	Topical applications of pyrethroid and organophosphate mixtures revealed positive interactions against pyrethroid-resistant Anopheles gambiae. Journal of the American Mosquito Control Association, 2004, 20, 438-43.	0.7	6
122	Evidence for Selection of Insecticide Resistance Due to Insensitive Acetylcholinesterase by Carbamate-Treated Nets in <l>Anopheles gambiae s.s.</l> (Diptera: Culicidae) from Côte d'Ivoire. Journal of Medical Entomology, 2003, 40, 985-988.	1.8	27
123	Distribution, Mechanisms, Impact and Management of Insecticide Resistance in Malaria Vectors: A Pragmatic Review. , 0, , .		72