
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657650/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 1998, 212-213, 198-212.	5.4	2,175
2	Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model. Journal of Climate, 1993, 6, 1825-1842.	3.2	1,003
3	A High Resolution Air Mass Transformation Model for Short-Range Weather Forecasting. Monthly Weather Review, 1990, 118, 1561-1575.	1.4	888
4	Flux Parameterization over Land Surfaces for Atmospheric Models. Journal of Applied Meteorology and Climatology, 1991, 30, 327-341.	1.7	791
5	Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorology, 1996, 81, 245-269.	2.3	427
6	An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer. Boundary-Layer Meteorology, 2006, 118, 247-272.	2.3	417
7	Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models. Bulletin of the American Meteorological Society, 2013, 94, 1691-1706.	3.3	362
8	Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer. Journals of the Atmospheric Sciences, 1991, 48, 1690-1698.	1.7	329
9	Applied Modeling of the Nighttime Surface Energy Balance over Land. Journal of Applied Meteorology and Climatology, 1988, 27, 689-704.	1.7	310
10	Influence of Soil Moisture on Boundary Layer Cloud Development. Journal of Hydrometeorology, 2004, 5, 86-99.	1.9	297
11	Single-Column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2006, 118, 273-303.	2.3	278
12	Scaling the atmospheric boundary layer. Boundary-Layer Meteorology, 1986, 36, 201-209.	2.3	261
13	Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 2015, 83, 91-103.	6.9	246
14	Role of test motivation in intelligence testing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7716-7720.	7.1	240
15	Applied dispersion modelling based on meteorological scaling parameters. Atmospheric Environment, 1987, 21, 79-89.	1.0	239
16	Surface energy balance closure in an arid region: role of soil heat flux. Agricultural and Forest Meteorology, 2004, 122, 21-37.	4.8	239
17	Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. Journal of Geophysical Research, 2011, 116, .	3.3	220
18	Evaluation of the Diurnal Cycle in the Atmospheric Boundary Layer Over Land as Represented by a Variety of Single-Column Models: The Second GABLS Experiment. Boundary-Layer Meteorology, 2011, 140, 177-206.	2.3	158

#	Article	IF	CITATIONS
19	A Conceptual View on Inertial Oscillations and Nocturnal Low-Level Jets. Journals of the Atmospheric Sciences, 2010, 67, 2679-2689.	1.7	156
20	A Climatology of Nocturnal Low-Level Jets at Cabauw. Journal of Applied Meteorology and Climatology, 2009, 48, 1627-1642.	1.5	149
21	Surface and Atmospheric Controls on the Onset of Moist Convection over Land. Journal of Hydrometeorology, 2013, 14, 1443-1462.	1.9	144
22	Intermittent Turbulence in the Stable Boundary Layer over Land. Part III: A Classification for Observations during CASES-99. Journals of the Atmospheric Sciences, 2003, 60, 2509-2522.	1.7	137
23	Interactions between dryâ€air entrainment, surface evaporation and convective boundaryâ€layer development. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 1277-1291.	2.7	132
24	The Minimum Wind Speed for Sustainable Turbulence in the Nocturnal Boundary Layer. Journals of the Atmospheric Sciences, 2012, 69, 3116-3127.	1.7	125
25	Estimates of diabatic wind speed profiles from near-surface weather observations. Boundary-Layer Meteorology, 1984, 29, 225-250.	2.3	123
26	An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations. Boundary-Layer Meteorology, 1996, 79, 131-175.	2.3	115
27	Spatial variability of the Rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research D: Atmospheres, 2014, 119, 677-692.	3.3	115
28	The Challenge of Forecasting the Onset and Development of Radiation Fog Using Mesoscale Atmospheric Models. Boundary-Layer Meteorology, 2015, 154, 265-289.	2.3	114
29	Exploring Self-Correlation in Flux–Gradient Relationships for Stably Stratified Conditions. Journals of the Atmospheric Sciences, 2006, 63, 3045-3054.	1.7	108
30	Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99. Journals of the Atmospheric Sciences, 2006, 63, 920-935.	1.7	107
31	Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions. Monthly Weather Review, 2010, 138, 4237-4253.	1.4	106
32	Evaluation of the Weather Research and Forecasting Mesoscale Model for GABLS3: Impact of Boundary-Layer Schemes, Boundary Conditions and Spin-Up. Boundary-Layer Meteorology, 2014, 152, 213-243.	2.3	105
33	Evaluation of Limited-Area Models for the Representation of the Diurnal Cycle and Contrasting Nights in CASES-99. Journal of Applied Meteorology and Climatology, 2008, 47, 869-887.	1.5	102
34	Intermittent Turbulence and Oscillations in the Stable Boundary Layer over Land. Part I: A Bulk Model. Journals of the Atmospheric Sciences, 2002, 59, 942-958.	1.7	101
35	Ammonia fluxes and derived canopy compensation points over non-fertilized agricultural grassland in The Netherlands using the new gradient ammonia—high accuracy—monitor (GRAHAM). Atmospheric Environment, 2007, 41, 1275-1287.	4.1	95
36	An updated length-scale formulation for turbulent mixing in clear and cloudy boundary layers. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 3405-3427.	2.7	93

ALBERT A M HOLTSLAG

#	Article	IF	CITATIONS
37	An inconvenient "truth―about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophysica, 2008, 56, 88-99.	2.0	92
38	Seasonal dependence of the urban heat island on the street canyon aspect ratio. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 2197-2210.	2.7	90
39	Analysis of wind speed observations over the North Sea. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 61, 51-69.	3.9	87
40	Entrainment process of carbon dioxide in the atmospheric boundary layer. Journal of Geophysical Research, 2004, 109, .	3.3	85
41	The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part B: Results and Process Understanding. Boundary-Layer Meteorology, 2014, 152, 157-187.	2.3	83
42	Representation of the Canopy Conductance in Modeling the Surface Energy Budget for Low Vegetation. Journal of Applied Meteorology and Climatology, 2001, 40, 1431-1444.	1.7	81
43	Towards Closing the Surface Energy Budget of a Mid-latitude Grassland. Boundary-Layer Meteorology, 2008, 126, 125-136.	2.3	81
44	Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers. Boundary-Layer Meteorology, 2006, 118, 243-246.	2.3	79
45	A diagnostic equation for the daily maximum urban heat island effect for cities in northwestern Europe. International Journal of Climatology, 2017, 37, 443-454.	3.5	75
46	Model Impacts of Entrainment and Detrainment Rates in Shallow Cumulus Convection. Journals of the Atmospheric Sciences, 1996, 53, 2354-2364.	1.7	73
47	Analysis of Model Results for the Turning of the Wind and Related Momentum Fluxes in the Stable Boundary Layer. Boundary-Layer Meteorology, 2009, 132, 261-277.	2.3	73
48	Parameterization of the Atmospheric Boundary Layer: A View from Just Above the Inversion. Bulletin of the American Meteorological Society, 2008, 89, 453-458.	3.3	70
49	Predicting the Collapse of Turbulence in Stably Stratified Boundary Layers. Flow, Turbulence and Combustion, 2007, 79, 251-274.	2.6	67
50	Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. Journal of Geophysical Research, 2012, 117, .	3.3	66
51	Modeling the surface–atmosphere exchange of ammonia. Atmospheric Environment, 2010, 44, 945-957.	4.1	65
52	A comparison of boundary layer diffusion schemes in unstable conditions over land. Boundary-Layer Meteorology, 1995, 76, 69-95.	2.3	64
53	Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteorology and Atmospheric Physics, 2003, 84, 157-170.	2.0	64
54	The role of snowâ€surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1199-1217.	3.3	63

#	Article	IF	CITATIONS
55	Impact of Skewness and Nonlocal Effects on Scalar and Buoyancy Fluxes in Convective Boundary Layers. Journals of the Atmospheric Sciences, 1998, 55, 151-162.	1.7	62
56	Impact of Surface Flux Formulations and Geostrophic Forcing on Large-Eddy Simulations of Diurnal Atmospheric Boundary Layer Flow. Journal of Applied Meteorology and Climatology, 2010, 49, 1496-1516.	1.5	62
57	An Automated Microlysimeter to Study Dew Formation and Evaporation in Arid and Semiarid Regions. Journal of Hydrometeorology, 2006, 7, 825-832.	1.9	59
58	Evaluation of the Kinetic Energy Approach for Modeling Turbulent Fluxesin Stratocumulus. Monthly Weather Review, 2000, 128, 244-258.	1.4	58
59	Wind profiles, momentum fluxes and roughness lengths at Cabauw revisited. Boundary-Layer Meteorology, 2007, 122, 701-719.	2.3	58
60	Impacts of Aerosol Shortwave Radiation Absorption on the Dynamics of an Idealized Convective Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2013, 148, 31-49.	2.3	58
61	Pan-Eurasian Experiment (PEEX): towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 2016, 16, 14421-14461.	4.9	57
62	Observations and Modeling of the Sea Breeze with the Return Current. Monthly Weather Review, 1999, 127, 625-640.	1.4	56
63	Exploring the Possible Role of Small-Scale Terrain Drag on Stable Boundary Layers over Land. Journal of Applied Meteorology and Climatology, 2008, 47, 2518-2530.	1.5	56
64	Evaluation of stability corrections in wind speed profiles over the North Sea. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33, 551-566.	3.9	55
65	Cool city mornings by urban heat. Environmental Research Letters, 2015, 10, 114022.	5.2	55
66	Low-level jets over the North Sea based on ERA5 and observations: together they do better. Wind Energy Science, 2019, 4, 193-209.	3.3	53
67	Simulation of Surface Fluxes and Boundary Layer Development over the Pine Forest in HAPEX-MOBILHY. Journal of Applied Meteorology and Climatology, 1996, 35, 202-213.	1.7	52
68	On the bulk parameterization of surface fluxes for various conditions and parameter ranges. Boundary-Layer Meteorology, 1997, 82, 119-133.	2.3	52
69	Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya. Hydrological Processes, 2008, 22, 4789-4801.	2.6	52
70	The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley. Boundary-Layer Meteorology, 2018, 168, 1-27.	2.3	51
71	Diagnostic Equations for the Stable Boundary Layer Height: Evaluation and Dimensional Analysis. Journal of Applied Meteorology and Climatology, 2007, 46, 212-225.	1.5	50
72	Long-term record and analysis of soil temperatures and soil heat fluxes in a grassland area, The Netherlands. Agricultural and Forest Meteorology, 2011, 151, 774-780.	4.8	50

#	Article	IF	CITATIONS
73	Improving Stable Boundary-Layer Height Estimation Using a Stability-Dependent Critical Bulk Richardson Number. Boundary-Layer Meteorology, 2013, 148, 93-109.	2.3	49
74	An Evaluation of Mass Flux Closures for Diurnal Cycles of Shallow Cumulus. Monthly Weather Review, 2004, 132, 2525-2538.	1.4	48
75	Exploring eddy-covariance and large-aperture scintillometer measurements in an Amazonian rain forest. Agricultural and Forest Meteorology, 2008, 148, 680-690.	4.8	48
76	A new remote optical wetness sensor and its applications. Agricultural and Forest Meteorology, 2008, 148, 580-591.	4.8	47
77	Observations of the radiation divergence in the surface layer and its implication for its parameterization in numerical weather prediction models. Journal of Geophysical Research, 2010, 115, .	3.3	46
78	Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer (ISOBAR)—The Hailuoto 2017 Campaign. Atmosphere, 2018, 9, 268.	2.3	45
79	How to design singleâ€column model experiments for comparison with observed nocturnal lowâ€ŀevel jets. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 671-684.	2.7	44
80	The Third GABLS Intercomparison Case for Evaluation Studies of Boundary-Layer Models. Part A: Case Selection and Set-Up. Boundary-Layer Meteorology, 2014, 152, 133-156.	2.3	44
81	A comparison of ABL heights inferred routinely from lidar and radiosondes at noontime. Boundary-Layer Meteorology, 1994, 68, 173-191.	2.3	43
82	A software library for the calculation of surface fluxes over land and sea. Environmental Software, 1990, 5, 60-68.	0.3	41
83	Dispersion of a Passive Tracer in Buoyancy- and Shear-Driven Boundary Layers. Journal of Applied Meteorology and Climatology, 2003, 42, 1116-1130.	1.7	41
84	Turbulent mixing of reactive gases in the convective boundary layer. Boundary-Layer Meteorology, 1997, 85, 197-222.	2.3	39
85	Relating Eulerian and Lagrangian Statistics for the Turbulent Dispersion in the Atmospheric Convective Boundary Layer. Journals of the Atmospheric Sciences, 2005, 62, 1175-1191.	1.7	38
86	Modelling the Arctic Stable Boundary Layer and its Coupling to the Surface. Boundary-Layer Meteorology, 2006, 118, 357-378.	2.3	38
87	Measurements and estimates of leaf wetness over agricultural grassland for dry deposition modeling of trace gases. Atmospheric Environment, 2008, 42, 5304-5316.	4.1	37
88	Real-Time Water Vapor Maps from a GPS Surface Network: Construction, Validation, and Applications. Journal of Applied Meteorology and Climatology, 2009, 48, 1302-1316.	1.5	37
89	Regional spore dispersal as a factor in disease risk warnings for potato late blight: A proof of concept. Agricultural and Forest Meteorology, 2009, 149, 419-430.	4.8	37
90	Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	37

ALBERT A M HOLTSLAG

#	Article	IF	CITATIONS
91	Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteorologische Zeitschrift, 2011, 20, 335-350.	1.0	37
92	The dispersion of chemically reactive species in the atmospheric boundary layer. Meteorology and Atmospheric Physics, 2004, 87, 23.	2.0	36
93	Surface Fluxes and Characteristics of Drying Semi-Arid Terrain in West Africa. Boundary-Layer Meteorology, 2006, 118, 583-612.	2.3	36
94	Spatial precipitation patterns and trends in The Netherlands during 1951–2009. International Journal of Climatology, 2014, 34, 1773-1784.	3.5	34
95	Role of land-surface temperature feedback on model performance for the stable boundary layer. Boundary-Layer Meteorology, 2007, 125, 361-376.	2.3	33
96	Representation of Boundary-Layer Processes in Numerical Weather Prediction and Climate Models. Boundary-Layer Meteorology, 2020, 177, 511-539.	2.3	32
97	Some Observational Evidence for Dry Soils Supporting Enhanced Relative Humidity at the Convective Boundary Layer Top. Journal of Hydrometeorology, 2012, 13, 1347-1358.	1.9	31
98	An observational climatology of anomalous wind events at offshore meteomast IJmuiden (North Sea). Journal of Wind Engineering and Industrial Aerodynamics, 2017, 165, 86-99.	3.9	31
99	Fifty Years of Atmospheric Boundary-Layer Research at Cabauw Serving Weather, Air Quality and Climate. Boundary-Layer Meteorology, 2020, 177, 583-612.	2.3	31
100	Carbon dioxide and water vapour flux densities over a grassland area in the Netherlands. International Journal of Climatology, 2003, 23, 1663-1675.	3.5	30
101	Spatial Heterogeneity of the Soil Moisture Content and Its Impact on Surface Flux Densities and Near-Surface Meteorology. Journal of Hydrometeorology, 2002, 3, 556-570.	1.9	29
102	Effect of open-path gas analyzer wetness on eddy covariance flux measurements: A proposed solution. Agricultural and Forest Meteorology, 2008, 148, 1563-1573.	4.8	29
103	An urban climate assessment and management tool for combined heat and air quality judgements at neighbourhood scales. Resources, Conservation and Recycling, 2018, 132, 204-217.	10.8	29
104	Quality of wind characteristics in recent wind atlases over the North Sea. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1498-1515.	2.7	29
105	Eighty years of meteorological observations at Wageningen, the Netherlands: precipitation and evapotranspiration. International Journal of Climatology, 2010, 30, 1315-1321.	3.5	28
106	Clearâ€sky stable boundary layers with low winds over snowâ€covered surfaces. Part 1: WRF model evaluation. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2165-2184.	2.7	28
107	Nighttime convection in the interior of a dense Douglas fir forest. Boundary-Layer Meteorology, 1999, 93, 171-195.	2.3	27
108	Low-frequency modulation of the atmospheric surface layer over Amazonian rain forest and its implication for similarity relationships. Agricultural and Forest Meteorology, 2006, 141, 192-207.	4.8	27

#	Article	IF	CITATIONS
109	Development and validation of a quasi-Gaussian plume model for the transport of botanical spores. Agricultural and Forest Meteorology, 2008, 148, 1383-1394.	4.8	25
110	A diagnostic equation for the maximum urban heat island effect of a typical Chinese city: A case study for Xi'an. Building and Environment, 2019, 158, 39-50.	6.9	25
111	Analysis of wind speed observations on the North Sea coast. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73, 125-144.	3.9	24
112	Seasonal and interannual variability of carbon dioxide and water balances of a grassland. Climatic Change, 2007, 82, 163-177.	3.6	24
113	Diagnosing evaporative fraction over land from boundaryâ€layer clouds. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8185-8196.	3.3	24
114	Observed urban effects on precipitation along the Dutch West coast. International Journal of Climatology, 2016, 36, 2111-2119.	3.5	24
115	Composite hodographs and inertial oscillations in the nocturnal boundary layer. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 528-535.	2.7	23
116	The Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer Project (ISOBAR): Unique Finescale Observations under Stable and Very Stable Conditions. Bulletin of the American Meteorological Society, 2021, 102, E218-E243.	3.3	23
117	Prediction of air pollution frequency distribution — Part I. The lognormal model. Atmospheric Environment, 1980, 14, 255-258.	1.0	22
118	Turbulent mixing and the chemical breakdown of isoprene in the atmospheric boundary layer. Journal of Geophysical Research, 2000, 105, 3983-4002.	3.3	19
119	The Impact of Radiation on the GABLS3 Large-Eddy Simulation through the Night and during the Morning Transition. Boundary-Layer Meteorology, 2014, 152, 189-211.	2.3	19
120	Interpretation of Crown Radiation Temperatures of a Dense Douglas fir Forest with Similarity Theory. Boundary-Layer Meteorology, 1999, 92, 429-451.	2.3	18
121	A First-Order Closure for Covariances and Fluxes of Reactive Species in the Convective Boundary Layer. Journal of Applied Meteorology and Climatology, 1999, 38, 1758-1776.	1.7	18
122	Water vapour and carbon dioxide fluxes over bog vegetation. Agricultural and Forest Meteorology, 2003, 116, 103-112.	4.8	18
123	Scaling Variances of Scalars in a Convective Boundary Layer Under Different Entrainment Regimes. Boundary-Layer Meteorology, 2006, 120, 257-274.	2.3	18
124	Measuring H2O and CO2 fluxes at field scales with scintillometry: Part II – Validation and application of 1-min flux estimates. Agricultural and Forest Meteorology, 2013, 178-179, 88-105.	4.8	18
125	Scaling of the Sea-Breeze Strength with Observations in the Netherlands. Boundary-Layer Meteorology, 2004, 112, 369-380.	2.3	17
126	Exploring the Impact of Land Cover and Topography on Rainfall Maxima in the Netherlands. Journal of Hydrometeorology, 2013, 14, 524-542.	1.9	16

#	Article	IF	CITATIONS
127	On the turbulence structure of deep katabatic flows on a gentle mesoscale slope. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1206-1231.	2.7	16
128	Fluxes and Gradients in the Convective Surface Layer and the Possible Role of Boundary-Layer Depth and Entrainment Flux. Boundary-Layer Meteorology, 2005, 116, 237-252.	2.3	15
129	Estimation of orographically induced wave drag in the stable boundary layer during the CASES-99 experimental campaign. Acta Geophysica, 2009, 57, 857-881.	2.0	15
130	Quantifying the Effect of Different Urban Planning Strategies on Heat Stress for Current and Future Climates in the Agglomeration of The Hague (The Netherlands). Atmosphere, 2018, 9, 353.	2.3	15
131	Evaluation of three mainstream numerical weather prediction models with observations from meteorological mast IJmuiden at the North Sea. Wind Energy, 2019, 22, 34-48.	4.2	15
132	Diabatic wind speed profiles in coastal regions: Comparison of an internal boundary layer (IBL) model with observations. Boundary-Layer Meteorology, 1990, 51, 49-75.	2.3	14
133	Screen level temperature increase due to higher atmospheric carbon dioxide in calm and windy nights revisited. Journal of Geophysical Research, 2011, 116, .	3.3	14
134	Land Surface Feedbacks on Spring Precipitation in the Netherlands. Journal of Hydrometeorology, 2015, 16, 232-243.	1.9	14
135	Regional carbon dioxide and energy fluxes from airborne observations using flight-path segmentation based on landscape characteristics. Biogeosciences, 2010, 7, 1307-1321.	3.3	13
136	Observational Support for the Stability Dependence of the Bulk Richardson Number Across the Stable Boundary Layer. Boundary-Layer Meteorology, 2014, 150, 515-523.	2.3	13
137	Modelling urban meteorology with increasing refinements for the complex morphology of a typical Chinese city (Xi'an). Building and Environment, 2020, 182, 107109.	6.9	13
138	Comments on "An Extremum Solution of the Monin–Obukhov Similarity Equations― Journals of the Atmospheric Sciences, 2011, 68, 1405-1408.	1.7	12
139	Convective boundary layer wind dynamics and inertial oscillations: the influence of surface stress. Quarterly Journal of the Royal Meteorological Society, 2013, 139, 1694-1711.	2.7	12
140	Downscaling daily air-temperature measurements in the Netherlands. Theoretical and Applied Climatology, 2020, 142, 751-767.	2.8	12
141	Evaluation of Two Land Surface Schemes Used in Terrains of Increasing Aridity in West Africa. Journal of Hydrometeorology, 2008, 9, 173-193.	1.9	11
142	Similarity Relations for \$\$C_{T}^2 \$\$ C T 2 in the Unstable Atmospheric Surface Layer: Dependence on Regression Approach, Observation Height and Stability Range. Boundary-Layer Meteorology, 2014, 153, 63-87.	2.3	11
143	Modelling the influence of urbanization on the 20th century temperature record of weather station De Bilt (The Netherlands). International Journal of Climatology, 2015, 35, 1732-1748.	3.5	11
144	Relative impacts of land use and climate change on summer precipitation in the Netherlands. Hydrology and Earth System Sciences, 2016, 20, 4129-4142.	4.9	11

#	Article	IF	CITATIONS
145	Clearâ€sky stable boundary layers with low winds over snowâ€covered surfaces. Part 2: Process sensitivity. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 821-835.	2.7	11
146	Analysis of urban rainfall from hourly to seasonal scales using highâ€resolution radar observations in the Netherlands. International Journal of Climatology, 2020, 40, 822-840.	3.5	11
147	Evaluation of a land-surface scheme at Cabauw. Theoretical and Applied Climatology, 2005, 80, 213-227.	2.8	10
148	Turbulent Prandtl number and characteristic length scales in stably stratified flows: steady-state analytical solutions. Environmental Fluid Mechanics, 2021, 21, 1273-1302.	1.6	10
149	Introduction to the Third GEWEX Atmospheric Boundary Layer Study (GABLS3). Boundary-Layer Meteorology, 2014, 152, 127-132.	2.3	9
150	Daily course of skewness and kurtosis within and above a crop canopy. Agricultural and Forest Meteorology, 2001, 110, 71-84.	4.8	8
151	Observing Boundary-Layer Winds from Hot-Air Balloon Flights. Weather and Forecasting, 2016, 31, 1451-1463.	1.4	8
152	Coupling between radiative flux divergence and turbulence near the surface. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 2491-2507.	2.7	8
153	On―and offâ€line evaluation of the singleâ€layer urban canopy model in London summertime conditions. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 1474-1489.	2.7	8
154	Performance of HIRLAM in a Semiarid Heterogeneous Region: Evaluation of the Land Surface and Boundary Layer Description Using EFEDA Observations. Monthly Weather Review, 2004, 132, 2745-2760.	1.4	7
155	Comments on deriving the equilibrium height of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 261-264.	2.7	7
156	Estimation of the refractive index structure parameter from single-level daytime routine weather data. Applied Optics, 2014, 53, 5944.	1.8	7
157	Evaluation of the ECHAM4 cloud-turbulence scheme for Stratocumulus. Meteorologische Zeitschrift, 2000, 9, 41-47.	1.0	7
158	Role of land-surface temperature feedback on model performance for the stable boundary layer. , 2007, , 205-220.		6
159	Multi-scale modelling of infection pressure from Phytophthora infestans. EPPO Bulletin, 2007, 37, 313-316.	0.8	6
160	Revisiting and revising Tatarskii's formulation for the temperature structure parameter (\$\$C_T^2\$\$) in atmospheric flows. Environmental Fluid Mechanics, 2022, 22, 1107-1119.	1.6	5
161	Representing the atmospheric boundary layer in climate models of intermediate complexity. Climate Dynamics, 2003, 21, 327-335.	3.8	3
162	Area-Averaged Surface Fluxes in a Semiarid Region with Partly Irrigated Land: Lessons Learned from EFEDA. Journal of Applied Meteorology and Climatology, 2006, 45, 856-874.	1.5	3

ALBERT A M HOLTSLAG

#	Article	IF	CITATIONS
163	Sensitivity analysis of leaf wetness duration within a potato canopy. Meteorological Applications, 2009, 16, 523-532.	2.1	3
164	Runway Wake Vortex, Crosswind, and Visibility Detection with a Scintillometer at Schiphol Airport. Boundary-Layer Meteorology, 2015, 157, 481-499.	2.3	3
165	Summer in the City: Forecasting and Mapping Human Thermal Comfort in Urban Areas. , 2015, , .		3
166	Single Column Modeling of Atmospheric Boundary Layers and the Complex Interactions with the Land Surface. , 2011, , 844-857.		2
167	Diagnostic Derivation of Boundary Layer Parameters from the Outputs of Atmospheric Models. , 1991, , 329-337.		2
168	The stable atmospheric boundary layer over snowâ€covered sea ice: Model evaluation with fineâ€scale ISOBAR18 observations. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 2031-2046.	2.7	1
169	Reply to comments on ?scaling the atmospheric boundary layer?. Boundary-Layer Meteorology, 1987, 38, 415-416.	2.3	Ο
170	Opportunistic Sensing with Recreational Hot-Air Balloon Flights. Bulletin of the American Meteorological Society, 2021, 102, E273-E278.	3.3	0
171	The Combined Effect of Mechanical and Thermal Forcing on the Dispersion of a Plume: Fine-Scale Modeling and Parameterization , 2004, , 363-371.		Ο
172	Impact of Aerosol Radiation Absorption on the Heat Budget and Dynamics of the Atmospheric Boundary Layer. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 113-117.	0.2	0