
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657196/publications.pdf Version: 2024-02-01

Ομλό Μεσλιιλ

#	Article	IF	CITATIONS
1	Nuclear lamins: Structure and function in mechanobiology. APL Bioengineering, 2022, 6, 011503.	3.3	29
2	Filament assembly of the C. elegans lamin in the absence of helix 1A. Nucleus, 2022, 13, 49-57.	0.6	1
3	Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115217119.	3.3	28
4	The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells, 2022, 11, 1456.	1.8	29
5	Structural basis for the activation and ligand recognition of the human oxytocin receptor. Nature Communications, 2022, 13, .	5.8	12
6	Gold nanomaterials and their potential use as cryo-electron tomography labels. Journal of Structural Biology, 2022, 214, 107880.	1.3	3
7	Computational analyses reveal spatial relationships between nuclear pore complexes and specific lamins. Journal of Cell Biology, 2021, 220, .	2.3	37
8	A lamin A/C variant causing striated muscle disease provides insights into filament organization. Journal of Cell Science, 2021, 134, .	1.2	17
9	Differential cellular responses to adhesive interactions with galectin-8- and fibronectin-coated substrates. Journal of Cell Science, 2021, 134, .	1.2	16
10	Unveiling the polarity of actin filaments by cryo-electron tomography. Structure, 2021, 29, 488-498.e4.	1.6	31
11	Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy. ELife, 2021, 10, .	2.8	22
12	Bend, Push, Stretch: Remarkable Structure and Mechanics of Single Intermediate Filaments and Meshworks. Cells, 2021, 10, 1960.	1.8	13
13	Structural analysis of receptors and actin polarity in platelet protrusions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
14	The cellular environment shapes the nuclear pore complex architecture. Nature, 2021, 598, 667-671.	13.7	139
15	Structures of neurokinin 1 receptor in complex with G _q and G _s proteins reveal substance P binding mode and unique activation features. Science Advances, 2021, 7, eabk2872.	4.7	25
16	Structure and unique mechanical aspects of nuclear lamin filaments. Current Opinion in Structural Biology, 2020, 64, 152-159.	2.6	37
17	Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. Nature Communications, 2020, 11, 6205.	5.8	40
18	Biomimetic nuclear lamin fibers with remarkable toughness and stiffness. International Journal of Biological Macromolecules, 2020, 163, 2060-2067.	3.6	4

#	Article	IF	CITATIONS
19	Glycoprotein lb clustering in platelets can be inhibited by α-linolenic acid as revealed by cryo-electron tomography. Haematologica, 2020, 105, 1660-1666.	1.7	13
20	The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature, 2020, 580, 413-417.	13.7	63
21	Lamin A/C Assembly Defects in LMNA-Congenital Muscular Dystrophy Is Responsible for the Increased Severity of the Disease Compared with Emery–Dreifuss Muscular Dystrophy. Cells, 2020, 9, 844.	1.8	29
22	Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces. F1000Research, 2020, 9, 449.	0.8	6
23	Talin-activated vinculin interacts with branched actin networks to initiate bundles. ELife, 2020, 9, .	2.8	39
24	Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces. F1000Research, 2020, 9, 449.	0.8	2
25	The NSL complex maintains nuclear architecture stability via lamin A/C acetylation. Nature Cell Biology, 2019, 21, 1248-1260.	4.6	61
26	Cellular and Structural Studies of Eukaryotic Cells by Cryo-Electron Tomography. Cells, 2019, 8, 57.	1.8	48
27	The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science, 2019, 364, 389-394.	6.0	89
28	Morphometric analysis of spread platelets identifies integrin αIIbβ3-specific contractile phenotype. Scientific Reports, 2018, 8, 5428.	1.6	28
29	Conformational states during vinculin unlocking differentially regulate focal adhesion properties. Scientific Reports, 2018, 8, 2693.	1.6	40
30	Adenoviral vector with shield and adapter increases tumor specificity and escapes liver and immune control. Nature Communications, 2018, 9, 450.	5.8	65
31	Nuclear Lamins: Thin Filaments with Major Functions. Trends in Cell Biology, 2018, 28, 34-45.	3.6	227
32	Profilin 1–mediated cytoskeletal rearrangements regulate integrin function in mouse platelets. Blood Advances, 2018, 2, 1040-1045.	2.5	12
33	Insight into the functional organization of nuclear lamins in health and disease. Current Opinion in Cell Biology, 2018, 54, 72-79.	2.6	40
34	Tiopronin-Protected Gold Nanoparticles as a Potential Marker for Cryo-EM and Tomography. Structure, 2018, 26, 1408-1413.e3.	1.6	17
35	The molecular architecture of lamins in somatic cells. Nature, 2017, 543, 261-264.	13.7	339
36	Phosphorylation-Induced Mechanical Regulation ofÂIntrinsically Disordered Neurofilament Proteins. Biophysical Journal, 2017, 112, 892-900.	0.2	21

#	Article	IF	CITATIONS
37	Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation. Journal of Cell Science, 2016, 129, 1781-91.	1.2	26
38	Toward correlating structure and mechanics of platelets. Cell Adhesion and Migration, 2016, 10, 568-575.	1.1	23
39	The assembly of C. elegans lamins into macroscopic fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 35-43.	1.5	6
40	The macromolecular architecture of platelet-derived microparticles. Journal of Structural Biology, 2016, 193, 181-187.	1.3	19
41	Cellular structural biology as revealed by cryo-electron tomography. Journal of Cell Science, 2016, 129, 469-76.	1.2	48
42	Insights into the gate of the nuclear pore complex. Nucleus, 2016, 7, 1-7.	0.6	12
43	Architecture and Characteristics of Bacterial Nanotubes. Developmental Cell, 2016, 36, 453-461.	3.1	84
44	Roll, adhere, spread and contract: Structural mechanics of platelet function. European Journal of Cell Biology, 2015, 94, 129-138.	1.6	56
45	Structure and gating of the nuclear pore complex. Nature Communications, 2015, 6, 7532.	5.8	165
46	Developments in cryo-electron tomography for in situ structural analysis. Archives of Biochemistry and Biophysics, 2015, 581, 78-85.	1.4	22
47	Structural analysis of multicellular organisms with cryo-electron tomography. Nature Methods, 2015, 12, 634-636.	9.0	85
48	Altering lamina assembly identifies lamina-dependent and -independent functions for A-type lamins. Journal of Cell Science, 2015, 128, 3607-20.	1.2	46
49	Lamins: the structure and protein complexes. Current Opinion in Cell Biology, 2015, 32, 7-12.	2.6	89
50	Experimental analysis of co-evolution within protein complexes: The yeast exosome as a model. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1997-2006.	1.5	10
51	From lamins to lamina: a structural perspective. Histochemistry and Cell Biology, 2013, 140, 3-12.	0.8	22
52	The role of integrin-linked kinase in the molecular architecture of focal adhesions. Journal of Cell Science, 2013, 126, 4099-107.	1.2	75
53	Structural Analysis of Supramolecular Assemblies by Cryo-Electron Tomography. Structure, 2013, 21, 1522-1530.	1.6	42
54	Differential Effect of Actomyosin Relaxation on the Dynamic Properties of Focal Adhesion Proteins. PLoS ONE, 2013, 8, e73549.	1.1	52

#	Article	IF	CITATIONS
55	Advances in tomography: probing the molecular architecture of cells. Nature Reviews Molecular Cell Biology, 2012, 13, 736-742.	16.1	42
56	Structural and physiological phenotypes of disease-linked lamin mutations in C. elegans. Journal of Structural Biology, 2012, 177, 106-112.	1.3	35
57	Reconstructing adhesion structures in tissues by cryo-electron tomography of vitrified frozen sections. Journal of Structural Biology, 2012, 178, 76-83.	1.3	18
58	Filaments assembly of ectopically expressed Caenorhabditis elegans lamin within Xenopus oocytes. Journal of Structural Biology, 2012, 177, 113-118.	1.3	36
59	Functional Architecture of the Nuclear Pore Complex. Annual Review of Biophysics, 2012, 41, 557-584.	4.5	237
60	The Human Nuclear Pore Complex as Revealed by Cryo-Electron Tomography. Structure, 2012, 20, 998-1006.	1.6	175
61	Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Current Opinion in Structural Biology, 2011, 21, 670-677.	2.6	44
62	A laminopathic mutation disrupting lamin filament assembly causes disease-like phenotypes in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2011, 22, 2716-2728.	0.9	58
63	Microtubule organization in the final stages of cytokinesis as revealed by cryo-electron tomography. Journal of Cell Science, 2011, 124, 207-215.	1.2	40
64	Assembly and breakdown of microtubules within the midbody. Communicative and Integrative Biology, 2011, 4, 552-553.	0.6	2
65	Assembly and breakdown of microtubules within the midbody. Communicative and Integrative Biology, 2011, 4, 552-3.	0.6	1
66	Frontiers of microscopy-based research into cell–matrix adhesions. Current Opinion in Cell Biology, 2010, 22, 659-668.	2.6	47
67	Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nature Cell Biology, 2010, 12, 909-915.	4.6	213
68	Cryoelectron Tomography of Eukaryotic Cells. Methods in Enzymology, 2010, 483, 245-265.	0.4	16
69	Visualizing cellular processes at the molecular level by cryo-electron tomography. Journal of Cell Science, 2010, 123, 7-12.	1.2	59
70	Structural Analysis of a Metazoan Nuclear Pore Complex Reveals a Fused Concentric Ring Architecture. Journal of Molecular Biology, 2010, 395, 578-586.	2.0	85
71	Chromatin Organization and Radio Resistance in the Bacterium <i>Gemmata obscuriglobus</i> . Journal of Bacteriology, 2009, 191, 1439-1445.	1.0	52
72	Architecture and Molecular Mechanism of PAN, the Archaeal Proteasome Regulatory ATPase. Journal of Biological Chemistry, 2009, 284, 22952-22960.	1.6	14

#	Article	IF	CITATIONS
73	Structural analysis of the nuclear pore complex by integrated approaches. Current Opinion in Structural Biology, 2009, 19, 226-232.	2.6	63
74	Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO Journal, 2009, 28, 1157-1169.	3.5	69
75	The Supramolecular Organization of the C. elegans Nuclear Lamin Filament. Journal of Molecular Biology, 2009, 386, 1392-1402.	2.0	124
76	A progeria mutation reveals functions for lamin A in nuclear assembly, architecture, and chromosome organization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20788-20793.	3.3	185
77	Laminopathic mutations interfere with the assembly, localization, and dynamics of nuclear lamins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 180-185.	3.3	105
78	Haloferax volcanii AglB and AglD are Involved in N-glycosylation of the S-layer Glycoprotein and Proper Assembly of the Surface Layer. Journal of Molecular Biology, 2007, 374, 1224-1236.	2.0	131
79	Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature, 2007, 449, 611-615.	13.7	330
80	Organization of Actin Networks in Intact Filopodia. Current Biology, 2007, 17, 79-84.	1.8	151
81	Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4729-4734.	3.3	299
82	Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography. Science, 2004, 306, 1387-1390.	6.0	451
83	New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Experimental Cell Research, 2004, 301, 38-42.	1.2	37
84	Exploring the Inner Space of Cells by Cryoelectron-Tomography. Microscopy and Microanalysis, 2004, 10, 152-153.	0.2	1
85	Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO Journal, 2003, 22, 1302-1312.	3.5	176
86	Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science, 2002, 298, 1209-1213.	6.0	782
87	Dynamic organization of the actin system in the motile cells of Dictyostelium. Journal of Muscle Research and Cell Motility, 2002, 23, 639-649.	0.9	42
88	Visualization of unwinding activity of duplex RNA by DbpA, a DEAD box helicase, at single-molecule resolution by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5007-5012.	3.3	58
89	The Regulatory Complex of Drosophila melanogaster 26s Proteasomes. Journal of Cell Biology, 2000, 150, 119-130.	2.3	138
90	Gold-Tagged RNA—A Probe for Macromolecular Assemblies. Journal of Structural Biology, 1999, 127, 113-119.	1.3	20

6

#	Article	IF	CITATIONS
91	Nanoscale resolution of microbial fiber degradation in action. ELife, 0, 11, .	2.8	5