Guangyi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657161/publications.pdf

Version: 2024-02-01

567281 713466 21 992 15 21 citations h-index g-index papers 21 21 21 975 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Thermal Hydrolysis Pretreatment on Anaerobic Digestion of Protein-Rich Biowaste: Process Performance and Microbial Community Structures Shift. Frontiers in Environmental Science, 2022, 9, .	3.3	2
2	Emission Characteristics of NOx and SO2 during the Combustion of Antibiotic Mycelial Residue. International Journal of Environmental Research and Public Health, 2022, 19, 1581.	2.6	5
3	Research on the Influence of Combustion Methods on NO _{<i>x</i>} Emissions from Co-combustion of Various Tannery Wastes. ACS Omega, 2022, 7, 4110-4120.	3.5	7
4	Hydrothermal conversion of lignin and black liquor for phenolics with the aids of alkali and hydrogen donor. Carbon Resources Conversion, 2019, 2, 141-150.	5.9	14
5	A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification. Bioresource Technology, 2018, 254, 187-193.	9.6	62
6	Improvement of Solid-State Anaerobic Digestion of Yard Waste by Co-digestion and pH Adjustment. Waste and Biomass Valorization, 2018, 9, 211-221.	3.4	8
7	Characterization of oil shale pyrolysis by solid heat carrier in moving bed with internals. Fuel Processing Technology, 2017, 158, 191-198.	7.2	29
8	Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification. Water Research, 2017, 117, 49-57.	11.3	117
9	Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor. Fuel, 2017, 202, 66-77.	6.4	17
10	Fluidized bed combustion in steam-rich atmospheres for high-nitrogen fuel: Nitrogen distribution in char and volatile and their contributions to NOx. Fuel, 2016, 186, 204-214.	6.4	15
11	Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue. Bioresource Technology, 2016, 208, 49-57.	9.6	60
12	Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue. Chemical Engineering Journal, 2016, 284, 708-715.	12.7	48
13	Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue. Chemical Engineering Journal, 2015, 279, 530-537.	12.7	94
14	Hydrothermal treatment of antibiotic mycelial dreg: More understanding from fuel characteristics. Chemical Engineering Journal, 2015, 273, 147-155.	12.7	81
15	Anaerobic digestion of antibiotic residue in combination with hydrothermal pretreatment for biogas. Bioresource Technology, 2015, 192, 257-265.	9.6	73
16	Pyrolysis of lignin for phenols with alkaline additive. Fuel Processing Technology, 2014, 124, 212-221.	7.2	135
17	Anaerobic Digestion of Yard Waste with Hydrothermal Pretreatment. Applied Biochemistry and Biotechnology, 2014, 172, 2670-2681.	2.9	16
18	Pyrolysis of black liquor for phenols and impact of its inherent alkali. Fuel Processing Technology, 2014, 127, 149-156.	7.2	46

#	Article	IF	CITATIONS
19	Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel. Chemical Engineering Journal, 2014, 252, 230-238.	12.7	80
20	Technical Review on Thermochemical Conversion Based on Decoupling for Solid Carbonaceous Fuels. Energy & Energy	5.1	51
21	A new process for producing calcium acetate from vegetable wastes for use as an environmentally friendly deicer. Bioresource Technology, 2010, 101, 7299-7306.	9.6	32