Svetlozar Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657022/publications.pdf Version: 2024-02-01

SVETLOZAD WANOV

#	Article	IF	CITATIONS
1	Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries. Journal of Power Sources, 2018, 378, 235-247.	7.8	94
2	Electrocatalytically active nanocomposite from palladium nanoparticles and polyaniline: Oxidation of hydrazine. Sensors and Actuators B: Chemical, 2010, 150, 271-278.	7.8	89
3	Reversible and irreversible dilation of lithium-ion battery electrodes investigated by in-situ dilatometry. Journal of Power Sources, 2017, 342, 939-946.	7.8	83
4	Disentangling faradaic, pseudocapacitive, and capacitive charge storage: A tutorial for the characterization of batteries, supercapacitors, and hybrid systems. Electrochimica Acta, 2022, 412, 140072.	5.2	78
5	Au nanoparticle–polyaniline nanocomposite layers obtained through layer-by-layer adsorption for the simultaneous determination of dopamine and uric acid. Electrochimica Acta, 2011, 56, 3693-3699.	5.2	71
6	Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles. Nanoscale Research Letters, 2016, 11, 140.	5.7	65
7	A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution. Journal of Power Sources, 2014, 268, 414-422.	7.8	55
8	Electrochemical and surface structural characterization of chemically and electrochemically synthesized polyaniline coatings. Thin Solid Films, 2003, 441, 44-49.	1.8	51
9	Corrosion of aluminium current collector in lithium-ion batteries: A review. Journal of Energy Storage, 2021, 43, 103226.	8.1	45
10	Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid. Electrochimica Acta, 2015, 168, 403-413.	5.2	42
11	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 701-707.	2.9	40
12	Electroless versus electrodriven deposition of silver crystals in polyaniline. Electrochimica Acta, 2005, 50, 5616-5623.	5.2	37
13	Electrochemical dispersion technique for preparation of hybrid MO x –C supports and Pt/MO x –C electrocatalysts for low-temperature fuel cells. Journal of Applied Electrochemistry, 2016, 46, 1245-1260.	2.9	35
14	Silver electrocrystallization at polyaniline-coated electrodes. Electrochimica Acta, 2004, 49, 913-921.	5.2	33
15	Conductometric transducing in electrocatalytical sensors: Detection of ascorbic acid. Electrochemistry Communications, 2006, 8, 643-646.	4.7	33
16	Role of polymer synthesis conditions for the copper electrodeposition in polyaniline. Electrochemistry Communications, 2001, 3, 312-316.	4.7	28
17	Enhanced lithium ion storage in TiO2 nanoparticles, induced by sulphur and carbon co-doping. Journal of Power Sources, 2016, 326, 270-278.	7.8	27
18	Electrochemical synthesis and characterization of TiO2-polyaniline composite layers. Journal of Applied Electrochemistry, 2007, 38, 63-69.	2.9	25

SVETLOZAR IVANOV

#	Article	IF	CITATIONS
19	Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes. Electrochimica Acta, 2013, 104, 228-235.	5.2	21
20	Electrochemical dispersion method for the synthesis of SnO2 as anode material for lithium ion batteries. Journal of Applied Electrochemistry, 2016, 46, 527-538.	2.9	21
21	Title is missing!. Journal of Applied Electrochemistry, 2002, 32, 709-715.	2.9	20
22	Electrochemical performance of nanoporous Si as anode for lithium ion batteries in alkyl carbonate and ionic liquid-based electrolytes. Journal of Applied Electrochemistry, 2014, 44, 159-168.	2.9	20
23	Taguchi method in experimental procedures focused on corrosion process of positive current collector in lithium-ion batteries. Electrochimica Acta, 2020, 360, 137011.	5.2	17
24	Voltammetric and conductometric behavior of nanocomposites of polyaniline and gold nanoparticles prepared by layer-by-layer technique. Journal of Solid State Electrochemistry, 2010, 14, 1261-1268.	2.5	16
25	Irreversible dilation of graphite composite anodes influenced by vinylene carbonate. Journal of Power Sources, 2020, 457, 228020.	7.8	15
26	Electroanalytical applications of nanocomposites from conducting polymers and metallic nanoparticles prepared by layer-by-layer deposition. Pure and Applied Chemistry, 2010, 83, 345-358.	1.9	14
27	Polyaniline doped with poly(acrylamidomethylpropanesulphonic acid): electrochemical behaviour and conductive properties in neutral solutions. Chemical Papers, 2013, 67, .	2.2	13
28	Electrochemical deposition of silicon from a sulfolane-based electrolyte: Effect of applied potential. Electrochemistry Communications, 2019, 103, 7-11.	4.7	13
29	Synthesis of Co3O4/CoOOH via electrochemical dispersion using a pulse alternating current method for lithium-ion batteries and supercapacitors. Solid State Sciences, 2018, 86, 53-59.	3.2	12
30	In situ analysis of surface morphology and viscoelastic effects during deposition of thin silicon layers from 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Electrochimica Acta, 2016, 219, 251-257.	5.2	11
31	Formation and electroanalytical performance of polyaniline–palladium nanocomposites obtained via Layer-by-Layer adsorption and electroless metal deposition. Electrochimica Acta, 2013, 90, 157-165.	5.2	10
32	High-temperature thin-film calorimetry: a newly developed method applied to lithium ion battery materials. Journal of Materials Science, 2013, 48, 6585-6596.	3.7	9
33	Automated Layerâ€by‣ayer Deposition of Polyelectrolytes in Flow Mode. Macromolecular Materials and Engineering, 2009, 294, 441-444.	3.6	8
34	Electrochemical lithiation of Si modified TiO2 nanotube arrays, investigated in ionic liquid electrolyte. Journal of Electroanalytical Chemistry, 2014, 731, 6-13.	3.8	7
35	Understanding the initial stages of Si electrodeposition under diffusion kinetic limitation in ionic liquid-based electrolytes. Journal of Crystal Growth, 2020, 531, 125346.	1.5	7
36	Electrogravimetry and Structural Properties of Thin Silicon Layers Deposited in Sulfolane and Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 57526-57538.	8.0	6

Svetlozar Ivanov

#	Article	IF	CITATIONS
37	Thin-Film Calorimetry: Analytical Tool for In-Situ Characterization of Lithium Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A727-A736.	2.9	5
38	Nanoscale Morphological Changes at Lithium Interface, Triggered by the Electrolyte Composition and Electrochemical Cycling. Journal of Chemistry, 2019, 2019, 1-13.	1.9	5
39	Synthesis of Different Molybdenum Disulfide Nanostructures and their Applicability in Lithium Ion Batteries with Ionic Liquid Electrolytes. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	4
40	Facile synthesis of a binder-free 3D Ni/NiO microwire network with a nanostructured fiber surface for a negative electrode in Li-ion battery. Journal of Applied Electrochemistry, 2021, 51, 815-828.	2.9	4
41	Enhanced cycling performance of binder free silicon-based anode by application of electrochemically formed microporous substrate. Electrochimica Acta, 2021, 380, 138216.	5.2	4
42	Electrochemical performance of ionic liquid-molybdenum disulfide Li-ion batteries. Journal of Applied Electrochemistry, 2013, 43, 559-565.	2.9	3
43	Thin Film Calorimetry - Device Development and Application to Lithium Ion Battery Materials. Materials Research Society Symposia Proceedings, 2013, 1496, 1.	0.1	3
44	Microgravimetric and Spectroscopic Analysis of Solidâ^'Electrolyte Interphase Formation in Presence of Additives. ChemPhysChem, 2019, 20, 655-664.	2.1	3
45	Thin-film calorimetry: In-situ characterization of materials for lithium-ion batteries. International Journal of Materials Research, 2017, 108, 904-919.	0.3	2
46	Effect of synthesis conditions and composition modification on the structural and electrochemical properties of layered transition metal oxide cathode materials. , 2014, , .		1
47	2.2 - Messsystem zur Bestimmung thermodynamischer Eigenschaften dünner Schichten bei hohen Temperaturen. , 2013, , .		1
48	Reversible Sodiation of Electrochemically Deposited Binder―and Conducting Additiveâ€Free Si–O–C Composite Layers. Energy Technology, 0, , 2101164.	3.8	1
49	State-of-Charge and State-of-Health Estimation of Commercial LiFePO ₄ Batteries by means of Impedance Spectroscopy. , 2016, , 3-18.		Ο