Mohammad Shahinur Rahaman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657020/publications.pdf

Version: 2024-02-01

1163117 888059 18 294 8 17 citations h-index g-index papers 18 18 18 304 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cooperative BrÃ,nsted-Lewis acid sites created by phosphotungstic acid encapsulated metal–organic frameworks for selective glucose conversion to 5-hydroxymethylfurfural. Fuel, 2022, 310, 122459.	6.4	28
2	Aluminumâ€based Metalâ€Organic Framework as Waterâ€tolerant Lewis Acid Catalyst for Selective Dihydroxyacetone Isomerization to Lactic Acid. ChemCatChem, 2022, 14, .	3.7	5
3	Mechanism of transfer hydrogenation of carbonyl compounds by zirconium and hafnium-containing metal-organic frameworks. Molecular Catalysis, 2022, 522, 112247.	2.0	4
4	Upcycling agricultural waste to biodegradable polyhydroxyalkanoates by combined ambient alkaline pretreatment and bacterial fermentation. Industrial Crops and Products, 2022, 185, 114867.	5.2	7
5	Aluminumâ€Containing Metalâ€Organic Frameworks as Selective and Reusable Catalysts for Glucose Isomerization to Fructose. ChemCatChem, 2022, 14, .	3.7	2
6	Catalytic isomerization of dihydroxyacetone to lactic acid by heat treated zeolites. Applied Catalysis A: General, 2021, 611, 117979.	4.3	19
7	Effects of polyol-based deep eutectic solvents on the efficiency of rice straw enzymatic hydrolysis. Industrial Crops and Products, 2021, 167, 113480.	5. 2	39
8	Kinetics of phosphotungstic acid-catalyzed condensation of levulinic acid with phenol to diphenolic acid: Temperature-controlled regioselectivity. Molecular Catalysis, 2021, 514, 111848.	2.0	4
9	DNA-induced assembly of gold nanoprisms and polystyrene beads into 3D plasmonic SERS substrates. Nanotechnology, 2021, 32, 025506.	2.6	8
10	Metal triflate formation of C ₁₂ –C ₂₂ phenolic compounds by the simultaneous C–O breaking and C–C coupling of benzyl phenyl ether. Dalton Transactions, 2021, 50, 17390-17396.	3.3	4
11	DNA-mediated hierarchical organization of gold nanoprisms into 3D aggregates and their application in surface-enhanced Raman scattering. Physical Chemistry Chemical Physics, 2021, 23, 25256-25263.	2.8	2
12	Metal–Organic Framework Separator as a Polyselenide Filter for High-Performance Lithium–Selenium Batteries. ACS Applied Energy Materials, 2021, 4, 13450-13460.	5.1	8
13	Hydrophobic functionalization of HY zeolites for efficient conversion of glycerol to solketal. Applied Catalysis A: General, 2020, 592, 117369.	4.3	42
14	Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity. Industrial & Engineering Chemistry Research, 2020, 59, 1010-1024.	3.7	9
15	Direct Production of Levulinic Acid in One Pot from Hemp Hurd by Dilute Acid in Ionic Liquids. Energy & Energy	5.1	23
16	Catalytic cleavage of the \hat{l}^2 -O-4 aryl ether bonds of lignin model compounds by Ru/C catalyst. Applied Catalysis A: General, 2019, 582, 117100.	4.3	50
17	Anaerobic Digestion of Kitchen Waste to Produce Biogas. Procedia Engineering, 2014, 90, 657-662.	1.2	40
18	A comparative study on anaerobic co-digestion of kitchen waste with sewage sludge and cow manure. , 2014, , .		0